Tensorflow 2 implementations of the C-SimCLR and C-BYOL self-supervised visual representation methods from "Compressive Visual Representations" (NeurIPS 2021)

Overview

Compressive Visual Representations

This repository contains the source code for our paper, Compressive Visual Representations. We developed information-compressed versions of the SimCLR and BYOL self-supervised learning algorithms, which we call C-SimCLR and C-BYOL, using the Conditional Entropy Bottleneck, and achieved significant improvements in accuracy and robustness, yielding linear evaluation performance competitive with fully supervised models.

cvr_perf

We include implementations of the C-SimCLR and C-BYOL algorithms developed in our paper, as well as SimCLR and BYOL baselines.

Getting Started

Install the necessary dependencies with pip install -r requirements.txt. We recommend creating a new virtual environment.

To train a model with C-SimCLR on ImageNet run bash scripts/csimclr.sh. And to train a model with C-BYOL, run bash scripts/cbyol.sh.

Refer to the scripts for further configuration options, and also to train the corresponding SimCLR and BYOL baselines.

These command lines use the hyperparameters used to train the models in our paper. In particular, we used a batch size of 4096 using 32 Cloud TPUs. Using different accelerators will require reducing the batch size. To get started with Google Cloud TPUs, we recommend following this tutorial.

Checkpoints

The following table contains pretrained checkpoints for C-SimCLR, C-BYOL and also their respective baselines, SimCLR and BYOL. All models are trained on ImageNet. The Top-1 accuracy is obtained by training a linear classifier on top of a ``frozen'' backbone whilst performing self-supervised training of the network.

Algorithm Backbone Training epochs ImageNet Top-1 Checkpoint
SimCLR ResNet 50 1000 71.1 link
SimCLR ResNet 50 2x 1000 74.6 link
C-SimCLR ResNet 50 1000 71.8 link
C-SimCLR ResNet 50 2x 1000 74.7 link
BYOL ResNet 50 1000 74.4 link
BYOL ResNet 50 2x 1000 77.3 link
C-BYOL ResNet 50 1000 75.9 link
C-BYOL ResNet 50 2x 1000 79.1 link
C-BYOL ResNet 101 1000 78.0 link
C-BYOL ResNet 152 1000 78.8 link
C-BYOL ResNet 50 1500 76.0 link

Reference

If you use C-SimCLR or C-BYOL, please use the following BibTeX entry.

@InProceedings{lee2021compressive,
  title={Compressive Visual Representations},
  author={Lee, Kuang-Huei and Arnab, Anurag and Guadarrama, Sergio and Canny, John and Fischer, Ian},
  booktitle={NeurIPS},
  year={2021}
}

Credits

This repository is based on SimCLR. We also match our BYOL implementation in Tensorflow 2 to the original implementation of BYOL in JAX.

Disclaimer: This is not an official Google product.

Owner
Google Research
Google Research
Tensorflow implementation for Self-supervised Graph Learning for Recommendation

If the compilation is successful, the evaluator of cpp implementation will be called automatically. Otherwise, the evaluator of python implementation will be called.

152 Jan 07, 2023
Code for the paper "Location-aware Single Image Reflection Removal"

Location-aware Single Image Reflection Removal The shown images are provided by the datasets from IBCLN, ERRNet, SIR2 and the Internet images. The cod

72 Dec 08, 2022
CAMPARI: Camera-Aware Decomposed Generative Neural Radiance Fields

CAMPARI: Camera-Aware Decomposed Generative Neural Radiance Fields Paper | Supplementary | Video | Poster If you find our code or paper useful, please

26 Nov 29, 2022
Official PyTorch implementation of DD3D: Is Pseudo-Lidar needed for Monocular 3D Object detection? (ICCV 2021), Dennis Park*, Rares Ambrus*, Vitor Guizilini, Jie Li, and Adrien Gaidon.

DD3D: "Is Pseudo-Lidar needed for Monocular 3D Object detection?" Install // Datasets // Experiments // Models // License // Reference Full video Offi

Toyota Research Institute - Machine Learning 364 Dec 27, 2022
Focal Loss for Dense Rotation Object Detection

Convert ResNets weights from GluonCV to Tensorflow Abstract GluonCV released some new resnet pre-training weights and designed some new resnets (such

17 Nov 24, 2021
Codes for the AAAI'22 paper "TransZero: Attribute-guided Transformer for Zero-Shot Learning"

TransZero [arXiv] This repository contains the testing code for the paper "TransZero: Attribute-guided Transformer for Zero-Shot Learning" accepted to

Shiming Chen 52 Jan 01, 2023
Re-implementation of 'Grokking: Generalization beyond overfitting on small algorithmic datasets'

Re-implementation of the paper 'Grokking: Generalization beyond overfitting on small algorithmic datasets' Paper Original paper can be found here Data

Tom Lieberum 38 Aug 09, 2022
GBK-GNN: Gated Bi-Kernel Graph Neural Networks for Modeling Both Homophily and Heterophily

GBK-GNN: Gated Bi-Kernel Graph Neural Networks for Modeling Both Homophily and Heterophily Abstract Graph Neural Networks (GNNs) are widely used on a

10 Dec 20, 2022
Multi-label classification of retinal disorders

Multi-label classification of retinal disorders This is a deep learning course project. The goal is to develop a solution, using computer vision techn

Sundeep Bhimireddy 1 Jan 29, 2022
PyTorch implementation of the Pose Residual Network (PRN)

Pose Residual Network This repository contains a PyTorch implementation of the Pose Residual Network (PRN) presented in our ECCV 2018 paper: Muhammed

Salih Karagoz 289 Nov 28, 2022
Training Very Deep Neural Networks Without Skip-Connections

DiracNets v2 update (January 2018): The code was updated for DiracNets-v2 in which we removed NCReLU by adding per-channel a and b multipliers without

Sergey Zagoruyko 585 Oct 12, 2022
Chainer Implementation of Semantic Segmentation using Adversarial Networks

Semantic Segmentation using Adversarial Networks Requirements Chainer (1.23.0) Differences Use of FCN-VGG16 instead of Dilated8 as Segmentor. Caution

Taiki Oyama 99 Jun 28, 2022
Implementation of popular bandit algorithms in batch environments.

batch-bandits Implementation of popular bandit algorithms in batch environments. Source code to our paper "The Impact of Batch Learning in Stochastic

Danil Provodin 2 Sep 11, 2022
The official implementation of A Unified Game-Theoretic Interpretation of Adversarial Robustness.

This repository is the official implementation of A Unified Game-Theoretic Interpretation of Adversarial Robustness. Requirements pip install -r requi

Jie Ren 17 Dec 12, 2022
Repository for "Toward Practical Monocular Indoor Depth Estimation" (CVPR 2022)

Toward Practical Monocular Indoor Depth Estimation Cho-Ying Wu, Jialiang Wang, Michael Hall, Ulrich Neumann, Shuochen Su [arXiv] [project site] DistDe

Meta Research 122 Dec 13, 2022
Pythonic particle-based (super-droplet) warm-rain/aqueous-chemistry cloud microphysics package with box, parcel & 1D/2D prescribed-flow examples in Python, Julia and Matlab

PySDM PySDM is a package for simulating the dynamics of population of particles. It is intended to serve as a building block for simulation systems mo

Atmospheric Cloud Simulation Group @ Jagiellonian University 32 Oct 18, 2022
Empower Sequence Labeling with Task-Aware Language Model

LM-LSTM-CRF Check Our New NER Toolkit 🚀 🚀 🚀 Inference: LightNER: inference w. models pre-trained / trained w. any following tools, efficiently. Tra

Liyuan Liu 838 Jan 05, 2023
Official implementation of the paper Visual Parser: Representing Part-whole Hierarchies with Transformers

Visual Parser (ViP) This is the official implementation of the paper Visual Parser: Representing Part-whole Hierarchies with Transformers. Key Feature

Shuyang Sun 117 Dec 11, 2022
Deep Learning Specialization by Andrew Ng, deeplearning.ai.

Deep Learning Specialization on Coursera Master Deep Learning, and Break into AI This is my personal projects for the course. The course covers deep l

Engen 1.5k Jan 07, 2023
Keras implementation of the GNM model in paper ’Graph-Based Semi-Supervised Learning with Nonignorable Nonresponses‘

Graph-based joint model with Nonignorable Missingness (GNM) This is a Keras implementation of the GNM model in paper ’Graph-Based Semi-Supervised Lear

Fan Zhou 2 Apr 17, 2022