A simple consistency training framework for semi-supervised image semantic segmentation

Overview

PseudoSeg: Designing Pseudo Labels for Semantic Segmentation

PseudoSeg is a simple consistency training framework for semi-supervised image semantic segmentation, which has a simple and novel re-design of pseudo-labeling to generate well-calibrated structured pseudo labels for training with unlabeled or weakly-labeled data. It is implemented by Yuliang Zou (research intern) in 2020 Summer.

This is not an official Google product.

Instruction

Installation

  • Use a virtual environment
virtualenv -p python3 --system-site-packages env
source env/bin/activate
  • Install packages
pip install -r requirements.txt

Dataset

Create a dataset folder under the ROOT directory, then download the pre-created tfrecords for voc12 and coco, and extract them in dataset folder. You may also want to check the filenames for each split under data_splits folder.

Training

NOTE:

  • We train all our models using 16 V100 GPUs.
  • The ImageNet pre-trained models can be download here.
  • For VOC12, ${SPLIT} can be 2_clean, 4_clean, 8_clean, 16_clean_3 (representing 1/2, 1/4, 1/8, and 1/16 splits), NUM_ITERATIONS should be set to 30000.
  • For COCO, ${SPLIT} can be 32_all, 64_all, 128_all, 256_all, 512_all (representing 1/32, 1/64, 1/128, 1/256, and 1/512 splits), NUM_ITERATIONS should be set to 200000.

Supervised baseline

python train_sup.py \
  --logtostderr \
  --train_split="${SPLIT}" \
  --model_variant="xception_65" \
  --atrous_rates=6 \
  --atrous_rates=12 \
  --atrous_rates=18 \
  --output_stride=16 \
  --decoder_output_stride=4 \
  --train_crop_size="513,513" \
  --num_clones=16 \
  --train_batch_size=64 \
  --training_number_of_steps="${NUM_ITERATIONS}" \
  --fine_tune_batch_norm=true \
  --tf_initial_checkpoint="${INIT_FOLDER}/xception_65/model.ckpt" \
  --train_logdir="${TRAIN_LOGDIR}" \
  --dataset_dir="${DATASET}"

PseudoSeg (w/ unlabeled data)

python train_wss.py \
  --logtostderr \
  --train_split="${SPLIT}" \
  --train_split_cls="train_aug" \
  --model_variant="xception_65" \
  --atrous_rates=6 \
  --atrous_rates=12 \
  --atrous_rates=18 \
  --output_stride=16 \
  --decoder_output_stride=4 \
  --train_crop_size="513,513" \
  --num_clones=16 \
  --train_batch_size=64 \
  --training_number_of_steps="${NUM_ITERATIONS}" \
  --fine_tune_batch_norm=true \
  --tf_initial_checkpoint="${INIT_FOLDER}/xception_65/model.ckpt" \
  --train_logdir="${TRAIN_LOGDIR}" \
  --dataset_dir="${DATASET}"

PseudoSeg (w/ image-level labeled data)

python train_wss.py \
  --logtostderr \
  --train_split="${SPLIT}" \
  --train_split_cls="train_aug" \
  --model_variant="xception_65" \
  --atrous_rates=6 \
  --atrous_rates=12 \
  --atrous_rates=18 \
  --output_stride=16 \
  --decoder_output_stride=4 \
  --train_crop_size="513,513" \
  --num_clones=16 \
  --train_batch_size=64 \
  --training_number_of_steps="${NUM_ITERATIONS}" \
  --fine_tune_batch_norm=true \
  --tf_initial_checkpoint="${INIT_FOLDER}/xception_65/model.ckpt" \
  --train_logdir="${TRAIN_LOGDIR}" \
  --dataset_dir="${DATASET}" \
  --weakly=true

Evaluation

NOTE: ${EVAL_CROP_SIZE} should be 513,513 for VOC12, 641,641 for COCO.

python eval.py \
  --logtostderr \
  --eval_split="val" \
  --model_variant="xception_65" \
  --atrous_rates=6 \
  --atrous_rates=12 \
  --atrous_rates=18 \
  --output_stride=16 \
  --decoder_output_stride=4 \
  --eval_crop_size="${EVAL_CROP_SIZE}" \
  --checkpoint_dir="${TRAIN_LOGDIR}" \
  --eval_logdir="${EVAL_LOGDIR}" \
  --dataset_dir="${DATASET}" \
  --max_number_of_evaluations=1

Visualization

NOTE: ${VIS_CROP_SIZE} should be 513,513 for VOC12, 641,641 for COCO.

python vis.py \
  --logtostderr \
  --vis_split="val" \
  --model_variant="xception_65" \
  --atrous_rates=6 \
  --atrous_rates=12 \
  --atrous_rates=18 \
  --output_stride=16 \
  --decoder_output_stride=4 \
  --vis_crop_size="${VIS_CROP_SIZE}" \
  --checkpoint_dir="${CKPT}" \
  --vis_logdir="${VIS_LOGDIR}" \
  --dataset_dir="${PASCAL_DATASET}" \
  --also_save_raw_predictions=true

Citation

If you use this work for your research, please cite our paper.

@article{zou2020pseudoseg,
  title={PseudoSeg: Designing Pseudo Labels for Semantic Segmentation},
  author={Zou, Yuliang and Zhang, Zizhao and Zhang, Han and Li, Chun-Liang and Bian, Xiao and Huang, Jia-Bin and Pfister, Tomas},
  journal={International Conference on Learning Representations (ICLR)},
  year={2021}
}
Owner
Google Interns
Google Interns
Segcache: a memory-efficient and scalable in-memory key-value cache for small objects

Segcache: a memory-efficient and scalable in-memory key-value cache for small objects This repo contains the code of Segcache described in the followi

TheSys Group @ CMU CS 78 Jan 07, 2023
📚 A collection of Jupyter notebooks for learning and experimenting with OpenVINO 👓

A collection of ready-to-run Python* notebooks for learning and experimenting with OpenVINO developer tools. The notebooks are meant to provide an introduction to OpenVINO basics and teach developers

OpenVINO Toolkit 840 Jan 03, 2023
Self Driving RC Car Code

Derp Learning Derp Learning is a Python package that collects data, trains models, and then controls an RC car for track racing. Hardware You will nee

Not Karol 39 Dec 07, 2022
DCSAU-Net: A Deeper and More Compact Split-Attention U-Net for Medical Image Segmentation

DCSAU-Net: A Deeper and More Compact Split-Attention U-Net for Medical Image Segmentation By Qing Xu, Wenting Duan and Na He Requirements pytorch==1.1

Qing Xu 20 Dec 09, 2022
PyTorch implementation of the YOLO (You Only Look Once) v2

PyTorch implementation of the YOLO (You Only Look Once) v2 The YOLOv2 is one of the most popular one-stage object detector. This project adopts PyTorc

申瑞珉 (Ruimin Shen) 433 Nov 24, 2022
NeuroFind - A solution to the to the Task given by the Oberseminar of Messtechnik Institute of TU Dresden in 2021

NeuroFind A solution to the to the Task given by the Oberseminar of Messtechnik

1 Jan 20, 2022
Style transfer, deep learning, feature transform

FastPhotoStyle License Copyright (C) 2018 NVIDIA Corporation. All rights reserved. Licensed under the CC BY-NC-SA 4.0 license (https://creativecommons

NVIDIA Corporation 10.9k Jan 02, 2023
masscan + nmap + Finger

说明 个人根据使用习惯修改masnmap而来的一个小工具。调用masscan做全端口扫描,再调用nmap做服务识别,最后调用Finger做Web指纹识别。工具使用场景适合风险探测排查、众测等。 使用方法 安装依赖 pip3 install -r requirements.txt -i https:/

Ryan 3 Mar 25, 2022
PyTorch implementation of the ACL, 2021 paper Parameter-efficient Multi-task Fine-tuning for Transformers via Shared Hypernetworks.

Parameter-efficient Multi-task Fine-tuning for Transformers via Shared Hypernetworks This repo contains the PyTorch implementation of the ACL, 2021 pa

Rabeeh Karimi Mahabadi 98 Dec 28, 2022
Adaptable tools to make reinforcement learning and evolutionary computation algorithms.

Pearl The Parallel Evolutionary and Reinforcement Learning Library (Pearl) is a pytorch based package with the goal of being excellent for rapid proto

38 Jan 01, 2023
Stacked Generative Adversarial Networks

Stacked Generative Adversarial Networks This repository contains code for the paper "Stacked Generative Adversarial Networks", CVPR 2017. Part of the

Xun Huang 241 May 07, 2022
2021搜狐校园文本匹配算法大赛 分比我们低的都是帅哥队

sohu_text_matching 2021搜狐校园文本匹配算法大赛Top2:分比我们低的都是帅哥队 本repo包含了本次大赛决赛环节提交的代码文件及答辩PPT,提交的模型文件可在百度网盘获取(链接:https://pan.baidu.com/s/1T9FtwiGFZhuC8qqwXKZSNA ,

hflserdaniel 43 Oct 01, 2022
Datasets and source code for our paper Webly Supervised Fine-Grained Recognition: Benchmark Datasets and An Approach

Introduction Datasets and source code for our paper Webly Supervised Fine-Grained Recognition: Benchmark Datasets and An Approach Datasets: WebFG-496

21 Sep 30, 2022
Deep Latent Force Models

Deep Latent Force Models This repository contains a PyTorch implementation of the deep latent force model (DLFM), presented in the paper, Compositiona

Tom McDonald 5 Oct 26, 2022
Node Editor Plug for Blender

NodeEditor Blender的程序化建模插件 Show Current 基本框架:自定义的tree-node-socket、tree中的node与socket采用字典查询、基于socket入度的拓扑排序 数据传递和处理依靠Tree中的字典,socket传递字典key TODO 增加更多的节点

Cuimi 11 Dec 03, 2022
Get started learning C# with C# notebooks powered by .NET Interactive and VS Code.

.NET Interactive Notebooks for C# Welcome to the home of .NET interactive notebooks for C#! How to Install Download the .NET Coding Pack for VS Code f

.NET Platform 425 Dec 25, 2022
Regularized Frank-Wolfe for Dense CRFs: Generalizing Mean Field and Beyond

CRF - Conditional Random Fields A library for dense conditional random fields (CRFs). This is the official accompanying code for the paper Regularized

Đ.Khuê Lê-Huu 21 Nov 26, 2022
An open source Python package for plasma science that is under development

PlasmaPy PlasmaPy is an open source, community-developed Python 3.7+ package for plasma science. PlasmaPy intends to be for plasma science what Astrop

PlasmaPy 444 Jan 07, 2023
Drone detection using YOLOv5

This drone detection system uses YOLOv5 which is a family of object detection architectures and we have trained the model on Drone Dataset. Overview I

Tushar Sarkar 27 Dec 20, 2022
App customer segmentation cohort rfm clustering

CUSTOMER SEGMENTATION COHORT RFM CLUSTERING TỔNG QUAN VỀ HỆ THỐNG DỮ LIỆU Nên chuyển qua theme màu dark thì sẽ nhìn đẹp hơn https://customer-segmentat

hieulmsc 3 Dec 18, 2021