What can linearized neural networks actually say about generalization?

Overview

What can linearized neural networks actually say about generalization?

This is the source code to reproduce the experiments of the NeurIPS 2021 paper "What can linearized neural networks actually say about generalization?" by Guillermo Ortiz-Jimenez, Seyed-Mohsen Moosavi-Dezfooli and Pascal Frossard.

Dependencies

To run the code, please install all its dependencies by running:

$ pip install -r requirements.txt

This assumes that you have access to a Linux machine with an NVIDIA GPU with CUDA>=11.1. Otherwise, please check the instructions to install JAX with your setup in the corresponding repository.

In general, all scripts are parameterized using hydra and their configuration files can be found in the config/ folder.

Experiments

The repository contains code to reproduce the following experiments:

Spectral decomposition of NTK

To generate our new benchmark, consisting on the eigenfunctions of the NTK at initialization, please run the python script compute_ntk.py selecting a desired model (e.g., mlp, lenet or resnet18) and supporting dataset (e.g., cifar10 or mnist). This can be done by running

$ python compute_ntk.py model=lenet data.dataset=cifar10

This script will save the eigenvalues, eigenfunctions and weights of the model under artifacts/eigenfunctions/{data.dataset}/{model}/.

For other configuration options, please consult the configuration file config/compute-ntk/config.yaml.

Warning

Take into account that, for large models, this computation can take very long. For example, it took us two days to compute the full eigenvalue decomposition of the NTK of one randomly initialized ResNet18 using 4 NVIDIA V100 GPUs. The estimation of eigenvectors for the MLP or the LeNet, on the other hand, can be done in a matter of minutes, depending on the number of GPUs available and the selected batch_size

Training on binary eigenfunctions

Once you have estimated the eigenfunctions of the NTK, you should be able to train on any of them. To that end, select the desired label_idx (i.e. eigenfunction index), model and dataset, and run

$ python train_ntk.py label_idx=100 model=lenet data.dataset=cifar10 linearize=False

You can choose to train with the original non-linear network, or its linear approximation by specifying your choice with the flag linearize. For the non-linear models, this script also computes the final alignment of the end NTK with the target function, which it stores under artifacts/eigenfunctions/{data.dataset}/{model}/alignment_plots/

To see the different supported training options, please consult the configuration file config/train-ntk/config.yaml.

Estimation of NADs

We also provide code to compute the NADs of a CNN architecture (e.g., lenet or resnet18) using the alignment with the NTK at initialization. To do so, please run

$ python compute_nads.py model=lenet

This script will save the eigenvalues, NADs and weights of the model under artifacts/nads/{model}/.

For other configuration options, please consult the configuration file config/compute-nads/config.yaml.

Training on linearly separable datasets

Once you have estimated the NADs of a network, you should be able to train on linearly separable datasets with a single NAD as discriminative feature. To that end, select the desired label_idx (i.e. NAD index) and model, and run

$ python train_nads.py label_idx=100 model=lenet linearize=False

You can choose to train with the original non-linear network, or its linear approximation by specifying your choice with the flag linearize.

To see the different supported training options, please consult the configuration file config/train-nads/config.yaml.

Comparison of training dynamics with pretrained NTK

We also provide code to compare the training dynamics of the linearize network at initialization, and after non-linear pretraining, to estimate a particular eigenfunction of the NTK at initialization. To do this, please run

$ python pretrained_ntk_comparison.py label_idx=100 model=lenet data.dataset=cifar10

To see the different supported training options, please consult the configuration file config/pretrained_ntk_comparison/config.yaml.

Training on CIFAR2

Finally, you can train a neural network and its linearize approximation on the binary version of CIFAR10, i.e., CIFAR2. To do this, please run

$ python train_cifar.py model=lenet linearize=False

To see the different supported training options, please consult the configuration file config/binary-cifar/config.yaml.

Reference

If you use this code, please cite the following paper:

@InCollection{Ortiz-JimenezNeurIPS2021,
  title = {What can linearized neural networks actually say about generalization?},
  author = {{Ortiz-Jimenez}, Guillermo and {Moosavi-Dezfooli}, Seyed-Mohsen and Frossard, Pascal},
  booktitle = {Advances in Neural Information Processing Systems 35},
  month = Dec,
  year = {2021}
}
Owner
gortizji
PhD student at EPFL
gortizji
Source code and notebooks to reproduce experiments and benchmarks on Bias Faces in the Wild (BFW).

Face Recognition: Too Bias, or Not Too Bias? Robinson, Joseph P., Gennady Livitz, Yann Henon, Can Qin, Yun Fu, and Samson Timoner. "Face recognition:

Joseph P. Robinson 41 Dec 12, 2022
Repository to run object detection on a model trained on an autonomous driving dataset.

Autonomous Driving Object Detection on the Raspberry Pi 4 Description of Repository This repository contains code and instructions to configure the ne

Ethan 51 Nov 17, 2022
Repo for "Event-Stream Representation for Human Gaits Identification Using Deep Neural Networks"

Summary This is the code for the paper Event-Stream Representation for Human Gaits Identification Using Deep Neural Networks by Yanxiang Wang, Xian Zh

zhangxian 54 Jan 03, 2023
Dynamic Head: Unifying Object Detection Heads with Attentions

Dynamic Head: Unifying Object Detection Heads with Attentions dyhead_video.mp4 This is the official implementation of CVPR 2021 paper "Dynamic Head: U

Microsoft 550 Dec 21, 2022
Official code for CVPR2022 paper: Depth-Aware Generative Adversarial Network for Talking Head Video Generation

📖 Depth-Aware Generative Adversarial Network for Talking Head Video Generation (CVPR 2022) 🔥 If DaGAN is helpful in your photos/projects, please hel

Fa-Ting Hong 503 Jan 04, 2023
Computer-Vision-Paper-Reviews - Computer Vision Paper Reviews with Key Summary along Papers & Codes

Computer-Vision-Paper-Reviews Computer Vision Paper Reviews with Key Summary along Papers & Codes. Jonathan Choi 2021 50+ Papers across Computer Visio

Jonathan Choi 2 Mar 17, 2022
Source code for models described in the paper "AudioCLIP: Extending CLIP to Image, Text and Audio" (https://arxiv.org/abs/2106.13043)

AudioCLIP Extending CLIP to Image, Text and Audio This repository contains implementation of the models described in the paper arXiv:2106.13043. This

458 Jan 02, 2023
A pytorch &keras implementation and demo of Fastformer.

Fastformer Notes from the authors Pytorch/Keras implementation of Fastformer. The keras version only includes the core fastformer attention part. The

153 Dec 28, 2022
Computing Shapley values using VAEAC

Shapley values and the VAEAC method In this GitHub repository, we present the implementation of the VAEAC approach from our paper "Using Shapley Value

3 Nov 23, 2022
Unofficial Implementation of MLP-Mixer in TensorFlow

mlp-mixer-tf Unofficial Implementation of MLP-Mixer [abs, pdf] in TensorFlow. Note: This project may have some bugs in it. I'm still learning how to i

Rishabh Anand 24 Mar 23, 2022
PyTorch implementation of paper "IBRNet: Learning Multi-View Image-Based Rendering", CVPR 2021.

IBRNet: Learning Multi-View Image-Based Rendering PyTorch implementation of paper "IBRNet: Learning Multi-View Image-Based Rendering", CVPR 2021. IBRN

Google Interns 371 Jan 03, 2023
A Transformer-Based Siamese Network for Change Detection

ChangeFormer: A Transformer-Based Siamese Network for Change Detection (Under review at IGARSS-2022) Wele Gedara Chaminda Bandara, Vishal M. Patel Her

Wele Gedara Chaminda Bandara 214 Dec 29, 2022
A Planar RGB-D SLAM which utilizes Manhattan World structure to provide optimal camera pose trajectory while also providing a sparse reconstruction containing points, lines and planes, and a dense surfel-based reconstruction.

ManhattanSLAM Authors: Raza Yunus, Yanyan Li and Federico Tombari ManhattanSLAM is a real-time SLAM library for RGB-D cameras that computes the camera

117 Dec 28, 2022
Implementation for Paper "Inverting Generative Adversarial Renderer for Face Reconstruction"

StyleGAR TODO: add arxiv link Implementation of Inverting Generative Adversarial Renderer for Face Reconstruction TODO: for test Currently, some model

155 Oct 27, 2022
Probabilistic Tracklet Scoring and Inpainting for Multiple Object Tracking

Probabilistic Tracklet Scoring and Inpainting for Multiple Object Tracking (CVPR 2021) Pytorch implementation of the ArTIST motion model. In this repo

Fatemeh 38 Dec 12, 2022
CVPR 2021: "Generating Diverse Structure for Image Inpainting With Hierarchical VQ-VAE"

Diverse Structure Inpainting ArXiv | Papar | Supplementary Material | BibTex This repository is for the CVPR 2021 paper, "Generating Diverse Structure

152 Nov 04, 2022
for taichi voxel-challange event

Taichi Voxel Challenge Figure: result of python3 example6.py. Please replace the image above (demo.jpg) with yours, so that other people can immediate

Liming Xu 20 Nov 26, 2022
PyTorch implementation of "ContextNet: Improving Convolutional Neural Networks for Automatic Speech Recognition with Global Context" (INTERSPEECH 2020)

ContextNet ContextNet has CNN-RNN-transducer architecture and features a fully convolutional encoder that incorporates global context information into

Sangchun Ha 24 Nov 24, 2022
This repository contains the accompanying code for Deep Virtual Markers for Articulated 3D Shapes, ICCV'21

Deep Virtual Markers This repository contains the accompanying code for Deep Virtual Markers for Articulated 3D Shapes, ICCV'21 Getting Started Get sa

KimHyomin 45 Oct 07, 2022
Toward Realistic Single-View 3D Object Reconstruction with Unsupervised Learning from Multiple Images (ICCV 2021)

Table of Content Introduction Getting Started Datasets Installation Experiments Training & Testing Pretrained models Texture fine-tuning Demo Toward R

VinAI Research 42 Dec 05, 2022