The implementation of our CIKM 2021 paper titled as: "Cross-Market Product Recommendation"

Related tags

Deep LearningFOREC
Overview

FOREC: A Cross-Market Recommendation System

This repository provides the implementation of our CIKM 2021 paper titled as "Cross-Market Product Recommendation". Please consider citing our paper if you find the code and XMarket dataset useful in your research.

The general schema of our FOREC recommendation system is shown below. For a pair of markets, the middle part shows the market-agnostic model that we pre-train, and then fork and fine-tune for each market shown in the left and right. Note that FOREC is capable of working with any desired number of target markets. However, for simplicity, we only experiment with pairs of markets for the experiments. For further details, please refer to our paper.

Requirements:

We use conda for our experimentations. Please refer to the requirements.txt for the list of libraries we use for our implementation. After setting up your environment, you can simply run this command pip install -r requirements.txt.

DATA

The DATA folder in this repository contains the cleaned and proccessed data that we use for our experiments. Please note that we made a few changes with releasing the data, and you might see slightly different numbers compared to the reported numbers in the paper.

If you wish to repeat the process on other categories of data or change the data preprocessing steps, prepare_data.ipynb provides the code for downloading and preprocessing data. Please refer to that jupyter notebook for further details. Don't hesitate to contact us in case of any problem.

Train the baseline and FOREC models (with Evaluations):

We provide three training scripts, for training baselines (single market, GMF, MLP, NMF++ and MAML) as well as FOREC model. Here are the list of models that for training and evaluating with the scripts provided:

  • train_base.py for GMF, MLP, NMF and their ++ versions as cross-market models
  • train_maml.py for training our MAML baseline
  • train_forec.py for trainig our proposed FOREC model

Note that since MAML and FOREC works on NMF architecture, you need to have same setting NMF++ model trained before proceeding with the MAML and FOREC training scripts. In addition, NMF requires that GMF and MLP models are trained, as it combines these two models into the architecture with some additional layers. See the middle part of the FOREC schema above.

In order to faciliate this, we provide a jupyter notebook (train_all.ipynb) that generates correct commands for all these trainings on any desired target market and augmenting source market pairs. Please follow the notebook for the training. For our trainings, we use slurm job management system on our server. However, you can still use/change the bash script generating part in the notebook to fit your own setup. These scripts are written into scripts folder created by the notebook. The logging of the training is alos in this directory under log sub-directory.

Note that for each of these, the train script evaluates on validation and test data (leave-one-out procedure for splitting---see data.py). The detailed evaluation results are dumped into EVAL folder as json files. Our trained checkpoints and an aggregator of evaluation json files will be provided shortly.

Citation

If you use this dataset, please refer to our CIKM’21 paper:

@inproceedings{bonab2021crossmarket,
    author = {Bonab, Hamed and Aliannejadi, Mohammad and Vardasbi, Ali and Kanoulas, Evangelos and Allan, James},
    booktitle = {Proceedings of the 30th ACM International Conference on Information \& Knowledge Management},
    publisher = {ACM},
    title = {Cross-Market Product Recommendation},
    year = {2021}}

Please feel free to either open an issue or contacting me at bonab [AT] cs.umass.edu

Owner
Hamed Bonab
PhD Candidate at UMass Amherst
Hamed Bonab
PyTorch implementation of Self-supervised Contrastive Regularization for DG (SelfReg)

SelfReg PyTorch official implementation of Self-supervised Contrastive Regularization for Domain Generalization (SelfReg, https://arxiv.org/abs/2104.0

64 Dec 16, 2022
Benchmarking Pipeline for Prediction of Protein-Protein Interactions

B4PPI Benchmarking Pipeline for the Prediction of Protein-Protein Interactions How this benchmarking pipeline has been built, and how to use it, is de

Loïc Lannelongue 4 Jun 27, 2022
FedScale: Benchmarking Model and System Performance of Federated Learning

FedScale: Benchmarking Model and System Performance of Federated Learning (Paper) This repository contains scripts and instructions of building FedSca

268 Jan 01, 2023
Visyerres sgdf woob - Modules Woob pour l'intranet et autres sites Scouts et Guides de France

Vis'Yerres SGDF - Modules Woob Vous avez le sentiment que l'intranet des Scouts

Thomas Touhey (pas un pseudonyme) 3 Dec 24, 2022
deep learning model that learns to code with drawing in the Processing language

sketchnet sketchnet - processing code generator can we teach a computer to draw pictures with code. We use Processing and java/jruby code paired with

41 Dec 12, 2022
Controlling Hill Climb Racing with Hand Tacking

Controlling Hill Climb Racing with Hand Tacking Opened Palm for Gas Closed Palm for Brake

Rohit Ingole 3 Jan 18, 2022
A PyTorch re-implementation of Neural Radiance Fields

nerf-pytorch A PyTorch re-implementation Project | Video | Paper NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis Ben Mildenhall

Krishna Murthy 709 Jan 09, 2023
A collection of resources on GAN Inversion.

This repo is a collection of resources on GAN inversion, as a supplement for our survey

The Few-Shot Bot: Prompt-Based Learning for Dialogue Systems

Few-Shot Bot: Prompt-Based Learning for Dialogue Systems This repository includes the dataset, experiments results, and code for the paper: Few-Shot B

Andrea Madotto 103 Dec 28, 2022
Proposal, Tracking and Segmentation (PTS): A Cascaded Network for Video Object Segmentation

Proposal, Tracking and Segmentation (PTS): A Cascaded Network for Video Object Segmentation By Qiang Zhou*, Zilong Huang*, Lichao Huang, Han Shen, Yon

Forest 117 Apr 01, 2022
[ICRA 2022] CaTGrasp: Learning Category-Level Task-Relevant Grasping in Clutter from Simulation

This is the official implementation of our paper: Bowen Wen, Wenzhao Lian, Kostas Bekris, and Stefan Schaal. "CaTGrasp: Learning Category-Level Task-R

Bowen Wen 199 Jan 04, 2023
Code for ICML 2021 paper: How could Neural Networks understand Programs?

OSCAR This repository contains the source code of our ICML 2021 paper How could Neural Networks understand Programs?. Environment Run following comman

Dinglan Peng 115 Dec 17, 2022
This repository contains code, network definitions and pre-trained models for working on remote sensing images using deep learning

Deep learning for Earth Observation This repository contains code, network definitions and pre-trained models for working on remote sensing images usi

Nicolas Audebert 447 Jan 05, 2023
Robust Instance Segmentation through Reasoning about Multi-Object Occlusion [CVPR 2021]

Robust Instance Segmentation through Reasoning about Multi-Object Occlusion [CVPR 2021] Abstract Analyzing complex scenes with DNN is a challenging ta

Irene Yuan 24 Jun 27, 2022
A general 3D Object Detection codebase in PyTorch.

Det3D is the first 3D Object Detection toolbox which provides off the box implementations of many 3D object detection algorithms such as PointPillars, SECOND, PIXOR, etc, as well as state-of-the-art

Benjin Zhu 1.4k Jan 05, 2023
Camera-caps - Examine the camera capabilities for V4l2 cameras

camera-caps This is a graphical user interface over the v4l2-ctl command line to

Jetsonhacks 25 Dec 26, 2022
Simple tool to combine(merge) onnx models. Simple Network Combine Tool for ONNX.

snc4onnx Simple tool to combine(merge) onnx models. Simple Network Combine Tool for ONNX. https://github.com/PINTO0309/simple-onnx-processing-tools 1.

Katsuya Hyodo 8 Oct 13, 2022
Keqing Chatbot With Python

KeqingChatbot A public running instance can be found on telegram as @keqingchat_bot. Requirements Python 3.8 or higher. A bot token. Local Deploy git

Rikka-Chan 2 Jan 16, 2022
Image super-resolution (SR) is a fast-moving field with novel architectures attracting the spotlight

Revisiting RCAN: Improved Training for Image Super-Resolution Introduction Image super-resolution (SR) is a fast-moving field with novel architectures

Zudi Lin 76 Dec 01, 2022
Code for the paper "Implicit Representations of Meaning in Neural Language Models"

Implicit Representations of Meaning in Neural Language Models Preliminaries Create and set up a conda environment as follows: conda create -n state-pr

Belinda Li 39 Nov 03, 2022