Official PyTorch implementation for Generic Attention-model Explainability for Interpreting Bi-Modal and Encoder-Decoder Transformers, a novel method to visualize any Transformer-based network. Including examples for DETR, VQA.

Overview

PyTorch Implementation of Generic Attention-model Explainability for Interpreting Bi-Modal and Encoder-Decoder Transformers

facebook

1   Using Colab

  • Please notice that the notebook assumes that you are using a GPU. To switch runtime go to Runtime -> change runtime type and select GPU.
  • Installing all the requirements may take some time. After installation, please restart the runtime.

2   Running Examples

Notice that we have two jupyter notebooks to run the examples presented in the paper.

  • The notebook for LXMERT contains both the examples from the paper and examples with images from the internet and free form questions. To use your own input, simply change the URL variable to your image and the question variable to your free form question.

    LXMERT.PNG LXMERT-web.PNG
  • The notebook for DETR contains the examples from the paper. To use your own input, simply change the URL variable to your image.

    DETR.PNG

3   Reproduction of results

3.1   VisualBERT

Run the run.py script as follows:

CUDA_VISIBLE_DEVICES=0 PYTHONPATH=`pwd` python VisualBERT/run.py --method=<method_name> --is-text-pert=<true/false> --is-positive-pert=<true/false> --num-samples=10000 config=projects/visual_bert/configs/vqa2/defaults.yaml model=visual_bert dataset=vqa2 run_type=val checkpoint.resume_zoo=visual_bert.finetuned.vqa2.from_coco_train env.data_dir=/path/to/data_dir training.num_workers=0 training.batch_size=1 training.trainer=mmf_pert training.seed=1234

Note

If the datasets aren't already in env.data_dir, then the script will download the data automatically to the path in env.data_dir.

3.2   LXMERT

  1. Download valid.json:

    pushd data/vqa
    wget https://nlp.cs.unc.edu/data/lxmert_data/vqa/valid.json
    popd
  2. Download the COCO_val2014 set to your local machine.

    Note

    If you already downloaded COCO_val2014 for the VisualBERT tests, you can simply use the same path you used for VisualBERT.

  3. Run the perturbation.py script as follows:

    CUDA_VISIBLE_DEVICES=0 PYTHONPATH=`pwd` python lxmert/lxmert/perturbation.py  --COCO_path /path/to/COCO_val2014 --method <method_name> --is-text-pert <true/false> --is-positive-pert <true/false>

3.3   DETR

  1. Download the COCO dataset as described in the DETR repository. Notice you only need the validation set.

  2. Lower the IoU minimum threshold from 0.5 to 0.2 using the following steps:

    • Locate the cocoeval.py script in your python library path:

      find library path:

      import sys
      print(sys.path)

      find cocoeval.py:

      cd /path/to/lib
      find -name cocoeval.py
    • Change the self.iouThrs value in the setDetParams function (which sets the parameters for the COCO detection evaluation) in the Params class as follows:

      insead of:

      self.iouThrs = np.linspace(.5, 0.95, int(np.round((0.95 - .5) / .05)) + 1, endpoint=True)

      use:

      self.iouThrs = np.linspace(.2, 0.95, int(np.round((0.95 - .2) / .05)) + 1, endpoint=True)
  3. Run the segmentation experiment, use the following command:

    CUDA_VISIBLE_DEVICES=0 PYTHONPATH=`pwd`  python DETR/main.py --coco_path /path/to/coco/dataset  --eval --masks --resume https://dl.fbaipublicfiles.com/detr/detr-r50-e632da11.pth --batch_size 1 --method <method_name>

4   Credits

Owner
Hila Chefer
MSc Student @ Tel Aviv University & Intern @ Microsoft's Innovation Labs
Hila Chefer
Unofficial implementation of Alias-Free Generative Adversarial Networks. (https://arxiv.org/abs/2106.12423) in PyTorch

alias-free-gan-pytorch Unofficial implementation of Alias-Free Generative Adversarial Networks. (https://arxiv.org/abs/2106.12423) This implementation

Kim Seonghyeon 502 Jan 03, 2023
PyTorch/TorchScript compiler for NVIDIA GPUs using TensorRT

PyTorch/TorchScript compiler for NVIDIA GPUs using TensorRT

NVIDIA Corporation 1.8k Dec 30, 2022
A sequence of Jupyter notebooks featuring the 12 Steps to Navier-Stokes

CFD Python Please cite as: Barba, Lorena A., and Forsyth, Gilbert F. (2018). CFD Python: the 12 steps to Navier-Stokes equations. Journal of Open Sour

Barba group 2.6k Dec 30, 2022
The implement of papar "Enhanced Graph Learning for Collaborative Filtering via Mutual Information Maximization"

SIGIR2021-EGLN The implement of paper "Enhanced Graph Learning for Collaborative Filtering via Mutual Information Maximization" Neural graph based Col

15 Dec 27, 2022
"Segmenter: Transformer for Semantic Segmentation" reproduced via mmsegmentation

Segmenter-based-on-OpenMMLab "Segmenter: Transformer for Semantic Segmentation, arxiv 2105.05633." reproduced via mmsegmentation. We reproduce Segment

EricKani 22 Feb 24, 2022
MINIROCKET: A Very Fast (Almost) Deterministic Transform for Time Series Classification

MINIROCKET: A Very Fast (Almost) Deterministic Transform for Time Series Classification

187 Dec 26, 2022
A highly efficient and modular implementation of Gaussian Processes in PyTorch

GPyTorch GPyTorch is a Gaussian process library implemented using PyTorch. GPyTorch is designed for creating scalable, flexible, and modular Gaussian

3k Jan 02, 2023
A PyTorch implementation of "Graph Classification Using Structural Attention" (KDD 2018).

GAM ⠀⠀ A PyTorch implementation of Graph Classification Using Structural Attention (KDD 2018). Abstract Graph classification is a problem with practic

Benedek Rozemberczki 259 Dec 05, 2022
FedCV: A Federated Learning Framework for Diverse Computer Vision Tasks

FedCV: A Federated Learning Framework for Diverse Computer Vision Tasks Image Classification Dataset: Google Landmark, COCO, ImageNet Model: Efficient

FedML-AI 62 Dec 10, 2022
Multiview 3D object detection on MultiviewC dataset through moft3d.

Voxelized 3D Feature Aggregation for Multiview Detection [arXiv] Multiview 3D object detection on MultiviewC dataset through VFA. Introduction We prop

Jiahao Ma 20 Dec 21, 2022
🎃 Core identification module of AI powerful point reading system platform.

ppReader-Kernel Intro Core identification module of AI powerful point reading system platform. Usage 硬件: Windows10、GPU:nvdia GTX 1060 、普通RBG相机 软件: con

CrashKing 1 Jan 11, 2022
PyTorch GPU implementation of the ES-RNN model for time series forecasting

Fast ES-RNN: A GPU Implementation of the ES-RNN Algorithm A GPU-enabled version of the hybrid ES-RNN model by Slawek et al that won the M4 time-series

Kaung 305 Jan 03, 2023
PyTorch Implementation of SSTNs for hyperspectral image classifications from the IEEE T-GRS paper "Spectral-Spatial Transformer Network for Hyperspectral Image Classification: A FAS Framework."

PyTorch Implementation of SSTN for Hyperspectral Image Classification Paper links: SSTN published on IEEE T-GRS. Also, you can directly find the imple

Zilong Zhong 54 Dec 19, 2022
Implementation of SSMF: Shifting Seasonal Matrix Factorization

SSMF Implementation of SSMF: Shifting Seasonal Matrix Factorization, Koki Kawabata, Siddharth Bhatia, Rui Liu, Mohit Wadhwa, Bryan Hooi. NeurIPS, 2021

Koki Kawabata 9 Jun 10, 2022
Tutorials and implementations for "Self-normalizing networks"

Self-Normalizing Networks Tutorials and implementations for "Self-normalizing networks"(SNNs) as suggested by Klambauer et al. (arXiv pre-print). Vers

Institute of Bioinformatics, Johannes Kepler University Linz 1.6k Jan 07, 2023
Tracking Pipeline helps you to solve the tracking problem more easily

Tracking_Pipeline Tracking_Pipeline helps you to solve the tracking problem more easily I integrate detection algorithms like: Yolov5, Yolov4, YoloX,

VNOpenAI 32 Dec 21, 2022
Defending graph neural networks against adversarial attacks (NeurIPS 2020)

GNNGuard: Defending Graph Neural Networks against Adversarial Attacks Authors: Xiang Zhang ( Zitnik Lab @ Harvard 44 Dec 07, 2022

Code for "Modeling Indirect Illumination for Inverse Rendering", CVPR 2022

Modeling Indirect Illumination for Inverse Rendering Project Page | Paper | Data Preparation Set up the python environment conda create -n invrender p

ZJU3DV 116 Jan 03, 2023
Official code of paper "PGT: A Progressive Method for Training Models on Long Videos" on CVPR2021

PGT Code for paper PGT: A Progressive Method for Training Models on Long Videos. Install Run pip install -r requirements.txt. Run python setup.py buil

Bo Pang 27 Mar 30, 2022
Codebase for the self-supervised goal reaching benchmark introduced in the LEXA paper

LEXA Benchmark Codebase for the self-supervised goal reaching benchmark introduced in the LEXA paper (Discovering and Achieving Goals via World Models

Oleg Rybkin 36 Dec 22, 2022