Dual Adaptive Sampling for Machine Learning Interatomic potential.

Related tags

Machine Learningdas
Overview

DAS

Dual Adaptive Sampling for Machine Learning Interatomic potential.

How to cite

If you use this code in your research, please cite this using: Hongliang Yang, Yifan Zhu, Erting Dong, Yabei Wu, Jiong Yang, and Wenqing Zhang. Dual adaptive sampling and machine learning interatomic potentials for modeling materials with chemical bond hierarchy. Phys. Rev. B 104, 094310 (2021).

Install

Install pymtp

You should first install the python interface for mtp: https://github.com/hlyang1992/pymtp

Install das

You can download the code by

git clone https://github.com/hlyang1992/das
cd das
cp -r <path-to-mlip-2>/untrained_mtps/*.mtp das/utils/untrained_mtps

Then remove the redundant settings from each mtp file. Only the following settings can be retained for each mtp file:

radial_funcs_count = 
alpha_moments_count = 
alpha_index_basic_count = 
alpha_index_basic = 
alpha_index_times_count = 
alpha_index_times = 
alpha_scalar_moments = 
alpha_moment_mapping =

Install das by

cd <path-to-das>
pip install -r requirements.txt
pip install .

Usage

das  config_dir  job_name

Configuration

The configuration directory config_dir must contain the configuration file conf.yaml, which controls all sampling processes. The conf.yaml file should look like the following:

"global_settings":

"machine_settings":

"selector_settings": {} 

"labeler_settings":

"trainer_settings":

"sampler_settings":

"init_conf_setting":

"iter_params_template":

"iter_params":
  • global_settings:
"global_settings":
  # The elements in the system, the order of the elements does not matter, the program automatically numbers the 
  # atomic types according to their atomic number from smallest to largest.
  "unique_elements": [ "Co", "Sb" ]
  # path to VASP Pseudopotential Database, see detail at https://wiki.fysik.dtu.dk/ase/ase/calculators/vasp.html#vasp
  "vasp_pp_path": "path_to_directory" 
  • machine_settings:

All time-consuming computational tasks such as sampling, labeling, and training can be dispatched to designated machines via ssh. Currently only LSF is supported and migration to other job management systems is very easy.

"machine_settings":
  "machine_1":
    # The supported machine types are now: `machine_lsf`, `machine_shell`
    "machine_type": "machine_lsf"
    "host": "ip address"
    "user": "username"
    "password": "password"
    # Exclude these nodes when submitting tasks.
    "bad_nodes": [ ] # #BSUB -R "hname!={{node}}"
    "port": 22
    # number of cores for each task
    "n_cores": 40 # #BSUB -n {{ncores}}
    "n_tasks": 40 # The maximum number of tasks to run simultaneously.
    "q_name": "short" # #BSUB -q {{q_name}}
    "env_source_file": "env.sh" # env.sh is in the config_dir
    "run_dir": "path-to-run-directory-in-target"
    "extra_params":
      "vasp_cmd": "mpiexec.hydra -machinefile $LSB_DJOB_HOSTFILE -np $NP vasp"
      "lmp_cmd": "mpiexec.hydra -machinefile $LSB_DJOB_HOSTFILE -np $NP lmp_mlp"
      "mlip_cmd": "mpiexec.hydra -machinefile $LSB_DJOB_HOSTFILE -np $NP mlp train"
      "python_cmd": "absolute path to python path"
  "machine_2":
    # setting for machchine_2
    "machine_type": "machine_lsf"
    # ...

You should prepare a file to set the environment variables. The program will source this file to set the environment variables after connecting to the machine via ssh. For technical reasons please see: The remote shell environment doesn’t match interactive shells

  • sampler_settings
"scale_1":
  "kind": "scale_box"
  "scale_factors": [0.998, 0.9985, 0.999]
"scale_2":
  "kind": "scale_box"
  "scale_factors": [[0.998, 0.9985, 0.999, 0.997], # a
                    [1.002, 1.003, 1.004, 1.005],  # b
                    [0.997, 0.995, 0.999, 0.996]] # c
"nvt_0": 
  "kind": "lmp_model_sampler"
  "max_number_confs": 5
  "min_number_confs": 0
  "machine": "machine_1"
  "lmp_vars":
    "temp": [ 100, 150 ]
    "steps": [ 10000 ]
    "nevery": [ 20 ]
    "prev_steps": [ 0 ]
 
"npt_0": 
  "kind": "lmp_model_sampler"
  "max_number_confs": 5
  "min_number_confs": 0
  "machine": "machine_2"
  "lmp_vars":
    "temp": [ 100, 150 ]
    "steps": [ 10000 ]
    "nevery": [ 20 ]
    "press": [100, 200] # bar
    "prev_steps": [ 0 ]
  • "labeler_settings"

We use ase to generate input files (INCAR, POTCAR, KPOINTS) for VASP calculation. Please see detail at Ase vasp calculator

"labeler_settings":
  "vasp":
    "kind": "vasp"
    "machine": "ty_label"
    "vasp_parms":
      "xc": "pbe"
      "prec": "A"
      # other setting for vasp calculations
  • "trainer_settings"
"trainer_settings":
  "train_5_model":
    "kind": "mtp_trainer"
    "machine": "ty_train" 
    "model_index": 18 
    "min_dist": 1.39 
    "max_dist": 5.0
    "n_models": 5 
    "train_from_prev_model": true 
  • init_conf_setting:
"init_conf_setting":
  "-1": [ "init_MD.cfg" ]
  "-2": [ "init_1.vasp" ]
  "-3": [ "init_2.vasp" ]
  • iter_params_template:
"iter_params_template":
  "0":
    "init_conf": [ -1 ]
    "sampler": [ ]
    "selector": [ ]
    "labeler": [ ]
    "trainer": [ "train_5_model" ]
  "10":
    "init_conf": [ -2 ]
    "sampler": [ "scale_0", "nvt_0" ]
    "selector": [ ]
    "labeler": [ "vasp" ]
    "trainer": [ "train_5_model" ]
  "20":
    "init_conf": [ -3 ]
    "sampler": [ "npt_0"]
    "selector": [ ]
    "labeler": [ "vasp" ]
    "trainer": [ "train_5_model" ]
  "30":
    "init_conf": [ -2,-3 ]
    "sampler": [ "npt_0"]
    "selector": [ ]
    "labeler": [ "vasp" ]
    "trainer": [ "train_5_model" ]
  • iter_params:
"iter_params":
  [
    [ "0" ],
    # If the last one is LOOP, repeat all the previous ones until convergence.
    ["10", "LOOP"], 
    ["30", "LOOP"],
    ["10", "10"]  
    ["20"],
  ]
Tribuo - A Java machine learning library

Tribuo - A Java prediction library (v4.1) Tribuo is a machine learning library in Java that provides multi-class classification, regression, clusterin

Oracle 1.1k Dec 28, 2022
Reproducibility and Replicability of Web Measurement Studies

Reproducibility and Replicability of Web Measurement Studies This repository holds additional material to the paper "Reproducibility and Replicability

6 Dec 31, 2022
Climin is a Python package for optimization, heavily biased to machine learning scenarios

climin climin is a Python package for optimization, heavily biased to machine learning scenarios distributed under the BSD 3-clause license. It works

Biomimetic Robotics and Machine Learning at Technische Universität München 177 Sep 02, 2022
Scalable, Portable and Distributed Gradient Boosting (GBDT, GBRT or GBM) Library, for Python, R, Java, Scala, C++ and more. Runs on single machine, Hadoop, Spark, Dask, Flink and DataFlow

eXtreme Gradient Boosting Community | Documentation | Resources | Contributors | Release Notes XGBoost is an optimized distributed gradient boosting l

Distributed (Deep) Machine Learning Community 23.6k Jan 03, 2023
Anytime Learning At Macroscale

On Anytime Learning At Macroscale Learning from sequential data dumps (key) Requirements Python 3.7 Pytorch 1.9.0 Hydra 1.1.0 (pip install hydra-core

Meta Research 8 Mar 29, 2022
A Python package for time series classification

pyts: a Python package for time series classification pyts is a Python package for time series classification. It aims to make time series classificat

Johann Faouzi 1.4k Jan 01, 2023
Lightweight Machine Learning Experiment Logging 📖

Simple logging of statistics, model checkpoints, plots and other objects for your Machine Learning Experiments (MLE). Furthermore, the MLELogger comes with smooth multi-seed result aggregation and co

Robert Lange 65 Dec 08, 2022
Temporal Alignment Prediction for Supervised Representation Learning and Few-Shot Sequence Classification

Temporal Alignment Prediction for Supervised Representation Learning and Few-Shot Sequence Classification Introduction. This package includes the pyth

5 Dec 06, 2022
Causal Inference and Machine Learning in Practice with EconML and CausalML: Industrial Use Cases at Microsoft, TripAdvisor, Uber

Causal Inference and Machine Learning in Practice with EconML and CausalML: Industrial Use Cases at Microsoft, TripAdvisor, Uber

EconML/CausalML KDD 2021 Tutorial 124 Dec 28, 2022
An MLOps framework to package, deploy, monitor and manage thousands of production machine learning models

Seldon Core: Blazing Fast, Industry-Ready ML An open source platform to deploy your machine learning models on Kubernetes at massive scale. Overview S

Seldon 3.5k Jan 01, 2023
CD) in machine learning projectsImplementing continuous integration & delivery (CI/CD) in machine learning projects

CML with cloud compute This repository contains a sample project using CML with Terraform (via the cml-runner function) to launch an AWS EC2 instance

Iterative 19 Oct 03, 2022
A handy tool for common machine learning models' hyper-parameter tuning.

Common machine learning models' hyperparameter tuning This repo is for a collection of hyper-parameter tuning for "common" machine learning models, in

Kevin Hu 2 Jan 27, 2022
Pandas Machine Learning and Quant Finance Library Collection

Pandas Machine Learning and Quant Finance Library Collection

148 Dec 07, 2022
A machine learning toolkit dedicated to time-series data

tslearn The machine learning toolkit for time series analysis in Python Section Description Installation Installing the dependencies and tslearn Getti

2.3k Jan 05, 2023
Convoys is a simple library that fits a few statistical model useful for modeling time-lagged conversions.

Convoys is a simple library that fits a few statistical model useful for modeling time-lagged conversions. There is a lot more info if you head over to the documentation. You can also take a look at

Better 240 Dec 26, 2022
Library for machine learning stacking generalization.

stacked_generalization Implemented machine learning *stacking technic[1]* as handy library in Python. Feature weighted linear stacking is also availab

114 Jul 19, 2022
The Ultimate FREE Machine Learning Study Plan

The Ultimate FREE Machine Learning Study Plan

Patrick Loeber (Python Engineer) 2.5k Jan 05, 2023
Painless Machine Learning for python based on scikit-learn

PlainML Painless Machine Learning Library for python based on scikit-learn. Install pip install plainml Example from plainml import KnnModel, load_ir

1 Aug 06, 2022
A library of extension and helper modules for Python's data analysis and machine learning libraries.

Mlxtend (machine learning extensions) is a Python library of useful tools for the day-to-day data science tasks. Sebastian Raschka 2014-2021 Links Doc

Sebastian Raschka 4.2k Dec 29, 2022
Automatically build ARIMA, SARIMAX, VAR, FB Prophet and XGBoost Models on Time Series data sets with a Single Line of Code. Now updated with Dask to handle millions of rows.

Auto_TS: Auto_TimeSeries Automatically build multiple Time Series models using a Single Line of Code. Now updated with Dask. Auto_timeseries is a comp

AutoViz and Auto_ViML 519 Jan 03, 2023