Supervised Contrastive Learning for Downstream Optimized Sequence Representations

Overview

PyPI license arXiv

SupCL-Seq 📖

Supervised Contrastive Learning for Downstream Optimized Sequence representations (SupCS-Seq) accepted to be published in EMNLP 2021, extends the supervised contrastive learning from computer vision to the optimization of sequence representations in NLP. By altering the dropout mask probability in standard Transformer architectures (e.g. BERT_base), for every representation (anchor), we generate augmented altered views. A supervised contrastive loss is then utilized to maximize the system’s capability of pulling together similar samples (e.g. anchors and their altered views) and pushing apart the samples belonging to the other classes. Despite its simplicity, SupCL-Seq leads to large gains in many sequence classification tasks on the GLUE benchmark compared to a standard BERT_base, including 6% absolute improvement on CoLA, 5.4% on MRPC, 4.7% on RTE and 2.6% on STS-B.

This package can be easily run on almost all of the transformer models in Huggingface 🤗 that contain an encoder including but not limited to:

  1. ALBERT
  2. BERT
  3. BigBird
  4. RoBerta
  5. ERNIE
  6. And many more models!

SupCL-Seq

Table of Contents

GLUE Benchmark BERT SupCL-SEQ

Installation

Usage

Run on GLUE

How to Cite

References

GLUE Benchmark BERT SupCL-SEQ

The table below reports the improvements over naive finetuning of BERT model on GLUE benchmark. We employed [CLS] token during training and expect that using the mean would further improve these results.

Glue

Installation

  1. First you need to install one of, or both, TensorFlow 2.0 and PyTorch. Please refer to TensorFlow installation page, PyTorch installation page and/or Flax installation page regarding the specific install command for your platform.

  2. Second step:

$ pip install SupCL-Seq

Usage

The package builds on the trainer from Huggingface 🤗 . Therefore, its use is exactly similar to trainer. The pipeline works as follows:

  1. First employ supervised contrastive learning to constratively optimize sentence embeddings using your annotated data.
from SupCL_Seq import SupCsTrainer

SupCL_trainer = SupCsTrainer.SupCsTrainer(
            w_drop_out=[0.0,0.05,0.2],      # Number of views and their associated mask drop-out probabilities [Optional]
            temperature= 0.05,              # Temeprature for the contrastive loss function [Optional]
            def_drop_out=0.1,               # Default drop out of the transformer, this is usually 0.1 [Optional]
            pooling_strategy='mean',        # Strategy used to extract embeddings can be from `mean` or `pooling` [Optional]
            model = model,                  # model
            args = CL_args,                 # Arguments from `TrainingArguments` [Optional]
            train_dataset=train_dataset,    # Train dataloader
            tokenizer=tokenizer,            # Tokenizer
            compute_metrics=compute_metrics # If you need a customized evaluation [Optional]
        )
  1. After contrastive training:

    2.1 Add a linear classification layer to your model

    2.2 Freeze the base layer

    2.3 Finetune the linear layer on your annotated data

For detailed implementation see glue.ipynb

Run on GLUE

In order to evaluate the method on GLUE benchmark please see the glue.ipynb

How to Cite

@misc{sedghamiz2021supclseq,
      title={SupCL-Seq: Supervised Contrastive Learning for Downstream Optimized Sequence Representations}, 
      author={Hooman Sedghamiz and Shivam Raval and Enrico Santus and Tuka Alhanai and Mohammad Ghassemi},
      year={2021},
      eprint={2109.07424},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}

References

[1] Supervised Contrastive Learning

[2] SimCSE: Simple Contrastive Learning of Sentence Embeddings

Owner
Hooman Sedghamiz
Data Science Lead interested in ML/AI and algorithm development for healthcare challenges.
Hooman Sedghamiz
Repository for the paper "From global to local MDI variable importances for random forests and when they are Shapley values"

From global to local MDI variable importances for random forests and when they are Shapley values Antonio Sutera ( Antonio Sutera 3 Feb 23, 2022

Model Serving Made Easy

The easiest way to build Machine Learning APIs BentoML makes moving trained ML models to production easy: Package models trained with any ML framework

BentoML 4.4k Jan 08, 2023
High performance Cross-platform Inference-engine, you could run Anakin on x86-cpu,arm, nv-gpu, amd-gpu,bitmain and cambricon devices.

Anakin2.0 Welcome to the Anakin GitHub. Anakin is a cross-platform, high-performance inference engine, which is originally developed by Baidu engineer

514 Dec 28, 2022
Code for Paper "Evidential Softmax for Sparse MultimodalDistributions in Deep Generative Models"

Evidential Softmax for Sparse Multimodal Distributions in Deep Generative Models Abstract Many applications of generative models rely on the marginali

Stanford Intelligent Systems Laboratory 9 Jun 06, 2022
Equivariant layers for RC-complement symmetry in DNA sequence data

Equi-RC Equivariant layers for RC-complement symmetry in DNA sequence data This is a repository that implements the layers as described in "Reverse-Co

7 May 19, 2022
This is the official implementation for the paper "Heterogeneous Multi-player Multi-armed Bandits: Closing the Gap and Generalization" in NeurIPS 2021.

MPMAB_BEACON This is code used for the paper "Decentralized Multi-player Multi-armed Bandits: Beyond Linear Reward Functions", Neurips 2021. Requireme

Cong Shen Research Group 0 Oct 26, 2021
Cours d'Algorithmique Appliquée avec Python pour BTS SIO SISR

Course: Introduction to Applied Algorithms with Python (in French) This is the source code of the website for the Applied Algorithms with Python cours

Loic Yvonnet 0 Jan 27, 2022
Robust, modular and efficient implementation of advanced Hamiltonian Monte Carlo algorithms

AdvancedHMC.jl AdvancedHMC.jl provides a robust, modular and efficient implementation of advanced HMC algorithms. An illustrative example for Advanced

The Turing Language 167 Jan 01, 2023
RetinaFace: Deep Face Detection Library in TensorFlow for Python

RetinaFace is a deep learning based cutting-edge facial detector for Python coming with facial landmarks.

Sefik Ilkin Serengil 512 Dec 29, 2022
Standalone pre-training recipe with JAX+Flax

Sabertooth Sabertooth is standalone pre-training recipe based on JAX+Flax, with data pipelines implemented in Rust. It runs on CPU, GPU, and/or TPU, b

Nikita Kitaev 26 Nov 28, 2022
PyTorch implementation of Hierarchical Multi-label Text Classification: An Attention-based Recurrent Network

hierarchical-multi-label-text-classification-pytorch Hierarchical Multi-label Text Classification: An Attention-based Recurrent Network Approach This

Mingu Kang 17 Dec 13, 2022
An implementation for `Text2Event: Controllable Sequence-to-Structure Generation for End-to-end Event Extraction`

Text2Event An implementation for Text2Event: Controllable Sequence-to-Structure Generation for End-to-end Event Extraction Please contact Yaojie Lu (@

Roger 153 Jan 07, 2023
ROSITA: Enhancing Vision-and-Language Semantic Alignments via Cross- and Intra-modal Knowledge Integration

ROSITA News & Updates (24/08/2021) Release the demo to perform fine-grained semantic alignments using the pretrained ROSITA model. (15/08/2021) Releas

Vision and Language Group@ MIL 48 Dec 23, 2022
Official implementation of CATs: Cost Aggregation Transformers for Visual Correspondence NeurIPS'21

CATs: Cost Aggregation Transformers for Visual Correspondence NeurIPS'21 For more information, check out the paper on [arXiv]. Training with different

Sunghwan Hong 120 Jan 04, 2023
Tiny Object Detection in Aerial Images.

AI-TOD AI-TOD is a dataset for tiny object detection in aerial images. [Paper] [Dataset] Description AI-TOD comes with 700,621 object instances for ei

jwwangchn 116 Dec 30, 2022
Deep Learning and Reinforcement Learning Library for Scientists and Engineers 🔥

TensorLayer is a novel TensorFlow-based deep learning and reinforcement learning library designed for researchers and engineers. It provides an extens

TensorLayer Community 7.1k Dec 27, 2022
TensorFlow code for the neural network presented in the paper: "Structural Language Models of Code" (ICML'2020)

SLM: Structural Language Models of Code This is an official implementation of the model described in: "Structural Language Models of Code" [PDF] To ap

73 Nov 06, 2022
Learning Open-World Object Proposals without Learning to Classify

Learning Open-World Object Proposals without Learning to Classify Pytorch implementation for "Learning Open-World Object Proposals without Learning to

Dahun Kim 149 Dec 22, 2022
🛠 All-in-one web-based IDE specialized for machine learning and data science.

All-in-one web-based development environment for machine learning Getting Started • Features & Screenshots • Support • Report a Bug • FAQ • Known Issu

Machine Learning Tooling 2.9k Jan 09, 2023
Competitive Programming Club, Clinify's Official repository for CP problems hosting by club members.

Clinify-CPC_Programs This repository holds the record of the competitive programming club where the competitive coding aspirants are thriving hard and

Clinify Open Sauce 4 Aug 22, 2022