Official Pytorch Implementation of Unsupervised Image Denoising with Frequency Domain Knowledge

Related tags

Deep LearningUID-FDK
Overview

Unsupervised Image Denoising with Frequency Domain Knowledge (BMVC 2021 Oral) : Official Project Page

This repository provides the official PyTorch implementation of the following paper:

Unsupervised Image Denoising with Frequency Domain Knowledge

Nahyun Kim* (KAIST), Donggon Jang* (KAIST), Sunhyeok Lee (KAIST), Bomi Kim (KAIST), and Dae-Shik Kim (KAIST) (*The authors have equally contributed.)

BMVC 2021, Accepted as Oral Paper.

Abstract: Supervised learning-based methods yield robust denoising results, yet they are inherently limited by the need for large-scale clean/noisy paired datasets. The use of unsupervised denoisers, on the other hand, necessitates a more detailed understanding of the underlying image statistics. In particular, it is well known that apparent differences between clean and noisy images are most prominent on high-frequency bands, justifying the use of low-pass filters as part of conventional image preprocessing steps. However, most learning-based denoising methods utilize only one-sided information from the spatial domain without considering frequency domain information. To address this limitation, in this study we propose a frequency-sensitive unsupervised denoising method. To this end, a generative adversarial network (GAN) is used as a base structure. Subsequently, we include spectral discriminator and frequency reconstruction loss to transfer frequency knowledge into the generator. Results using natural and synthetic datasets indicate that our unsupervised learning method augmented with frequency information achieves state-of-the-art denoising performance, suggesting that frequency domain information could be a viable factor in improving the overall performance of unsupervised learning-based methods.

Requirements

To install requirements:

conda env create -n [your env name] -f environment.yaml
conda activate [your env name]

To train the model

Synthetic Noise (AWGN)

  1. Download DIV2K dataset for training in here
  2. Randomly split the DIV2K dataset into Clean/Noisy set. Please refer the .txt files in split_data.
  3. Place the splitted dataset(DIV2K_C and DIV2K_N) in ./dataset directory.
dataset
└─── DIV2K_C
└─── DIV2K_N
└─── test
  1. Use gen_dataset_synthetic.py to package dataset in the h5py format.
  2. After that, run this command:
sh ./scripts/train_awgn_sigma15.sh # AWGN with a noise level = 15
sh ./scripts/train_awgn_sigma25.sh # AWGN with a noise level = 25
sh ./scripts/train_awgn_sigma50.sh # AWGN with a noise level = 50
  1. After finishing the training, .pth file is stored in ./exp/[exp_name]/[seed_number]/saved_models/ directory.

Real-World Noise

  1. Download SIDD-Medium Dataset for training in here
  2. Radnomly split the SIDD-Medium Dataset into Clean/Noisy set. Please refer the .txt files in split_data.
  3. Place the splitted dataset(SIDD_C and SIDD_N) in ./dataset directory.
dataset
└─── SIDD_C
└─── SIDD_N
└─── test
  1. Use gen_dataset_real.py to package dataset in the h5py format.
  2. After that, run this command:
sh ./scripts/train_real.sh
  1. After finishing the training, .pth file is stored in ./exp/[exp_name]/[seed_number]/saved_models/ directory.

To evaluate the model

Synthetic Noise (AWGN)

  1. Download CBSD68 dataset for evaluation in here
  2. Place the dataset in ./dataset/test directory.
dataset
└─── train
└─── test
     └─── CBSD68
     └─── SIDD_test
  1. After that, run this command:
sh ./scripts/test_awgn_sigma15.sh # AWGN with a noise level = 15
sh ./scripts/test_awgn_sigma25.sh # AWGN with a noise level = 25
sh ./scripts/test_awgn_sigma50.sh # AWGN with a noise level = 50

Real-World Noise

  1. Download the SIDD test dataset for evaluation in here
  2. Place the dataset in ./dataset/test directory.
dataset
└─── train
└─── test
     └─── CBSD68
     └─── SIDD_test
  1. After that, run this command:
sh ./scripts/test_real.sh

Pre-trained model

We provide pre-trained models in ./checkpoints directory.

checkpoints
|   AWGN_sigma15.pth # pre-trained model (AWGN with a noise level = 15)
|   AWGN_sigma25.pth # pre-trained model (AWGN with a noise level = 25)
|   AWGN_sigma50.pth # pre-trained model (AWGN with a noise level = 50)
|   SIDD.pth # pre-trained model (Real-World noise)

Acknowledgements

This code is built on U-GAT-IT,CARN, SSD-GAN. We thank the authors for sharing their codes.

Contact

If you have any questions, feel free to contact me ([email protected])

Owner
Donggon Jang
Donggon Jang
SOTA easy to use PyTorch-based DL training library

Easily train or fine-tune SOTA computer vision models from one training repository. SuperGradients Introduction Welcome to SuperGradients, a free open

619 Jan 03, 2023
Theano is a Python library that allows you to define, optimize, and evaluate mathematical expressions involving multi-dimensional arrays efficiently. It can use GPUs and perform efficient symbolic differentiation.

============================================================================================================ `MILA will stop developing Theano https:

9.6k Dec 31, 2022
Background-Click Supervision for Temporal Action Localization

Background-Click Supervision for Temporal Action Localization This repository is the official implementation of BackTAL. In this work, we study the te

LeYang 221 Oct 09, 2022
Distributed Evolutionary Algorithms in Python

DEAP DEAP is a novel evolutionary computation framework for rapid prototyping and testing of ideas. It seeks to make algorithms explicit and data stru

Distributed Evolutionary Algorithms in Python 4.9k Jan 05, 2023
Code for "Multi-View Multi-Person 3D Pose Estimation with Plane Sweep Stereo"

Multi-View Multi-Person 3D Pose Estimation with Plane Sweep Stereo This repository includes the source code for our CVPR 2021 paper on multi-view mult

Jiahao Lin 66 Jan 04, 2023
Post-Training Quantization for Vision transformers.

PTQ4ViT Post-Training Quantization Framework for Vision Transformers. We use the twin uniform quantization method to reduce the quantization error on

Zhihang Yuan 61 Dec 28, 2022
Convolutional Neural Networks

Darknet Darknet is an open source neural network framework written in C and CUDA. It is fast, easy to install, and supports CPU and GPU computation. D

Joseph Redmon 23.7k Jan 05, 2023
Symmetry and Uncertainty-Aware Object SLAM for 6DoF Object Pose Estimation

SUO-SLAM This repository hosts the code for our CVPR 2022 paper "Symmetry and Uncertainty-Aware Object SLAM for 6DoF Object Pose Estimation". ArXiv li

Robot Perception & Navigation Group (RPNG) 97 Jan 03, 2023
Simple helper library to convert a collection of numpy data to tfrecord, and build a tensorflow dataset from the tfrecord.

numpy2tfrecord Simple helper library to convert a collection of numpy data to tfrecord, and build a tensorflow dataset from the tfrecord. Installation

Ryo Yonetani 2 Jan 16, 2022
BARTScore: Evaluating Generated Text as Text Generation

This is the Repo for the paper: BARTScore: Evaluating Generated Text as Text Generation Updates 2021.06.28 Release online evaluation Demo 2021.06.25 R

NeuLab 196 Dec 17, 2022
Block-wisely Supervised Neural Architecture Search with Knowledge Distillation (CVPR 2020)

DNA This repository provides the code of our paper: Blockwisely Supervised Neural Architecture Search with Knowledge Distillation. Illustration of DNA

Changlin Li 215 Dec 19, 2022
NCVX (NonConVeX): A User-Friendly and Scalable Package for Nonconvex Optimization in Machine Learning.

NCVX NCVX: A User-Friendly and Scalable Package for Nonconvex Optimization in Machine Learning. Please check https://ncvx.org for detailed instruction

SUN Group @ UMN 28 Aug 03, 2022
Tackling the Class Imbalance Problem of Deep Learning Based Head and Neck Organ Segmentation

Info This is the code repository of the work Tackling the Class Imbalance Problem of Deep Learning Based Head and Neck Organ Segmentation from Elias T

2 Apr 20, 2022
Code for the paper "Generative design of breakwaters usign deep convolutional neural network as a surrogate model"

Generative design of breakwaters usign deep convolutional neural network as a surrogate model This repository contains the code for the paper "Generat

2 Apr 10, 2022
Yolact-keras实例分割模型在keras当中的实现

Yolact-keras实例分割模型在keras当中的实现 目录 性能情况 Performance 所需环境 Environment 文件下载 Download 训练步骤 How2train 预测步骤 How2predict 评估步骤 How2eval 参考资料 Reference 性能情况 训练数

Bubbliiiing 11 Dec 26, 2022
App customer segmentation cohort rfm clustering

CUSTOMER SEGMENTATION COHORT RFM CLUSTERING TỔNG QUAN VỀ HỆ THỐNG DỮ LIỆU Nên chuyển qua theme màu dark thì sẽ nhìn đẹp hơn https://customer-segmentat

hieulmsc 3 Dec 18, 2021
Display, filter and search log messages in your terminal

Textualog Display, filter and search logging messages in the terminal. This project is powered by rich and textual. Some of the ideas and code in this

Rik Huygen 24 Dec 10, 2022
Papers about explainability of GNNs

Papers about explainability of GNNs

Dongsheng Luo 236 Jan 04, 2023
TensorFlow implementation of ENet

TensorFlow-ENet TensorFlow implementation of ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation. This model was tested on th

Kwotsin 255 Oct 17, 2022
The MATH Dataset

Measuring Mathematical Problem Solving With the MATH Dataset This is the repository for Measuring Mathematical Problem Solving With the MATH Dataset b

Dan Hendrycks 267 Dec 26, 2022