GAN Image Generator and Characterwise Image Recognizer with python

Overview

MODEL SUMMARY

모델의 구조는 크게 6단계로 나뉩니다.

STEP 0: Input Image

raw

Predict 할 이미지를 모델에 입력합니다.

STEP 1: Make Black and White Image

raw

STEP 1 은 입력받은 이미지의 글자를 흑색으로, 배경을 백색으로 변환하는 과정입니다.

STEP 2: Make Fake image by GAN Model

raw

STEP 2 는 STEP 1에서 입력받은 이미지를 하나의 통일된 폰트의 이미지로 변환하는 과정입니다.

모델은 Pix2Pix Image-to-Image Translation 모델의 Generator 를 이용하며, 기울어지거나 Blurring 된 이미지도 위와 같이 정렬 및 복원하여 출력합니다.

STEP 3: Character-wise Text Detection - Bounding Box

raw

STEP 3 는 STEP 2의 Word 단위로 출력된 이미지에 Charater 단위 Bounding Box 를 만드는 과정입니다.

Bounding Box 를 형성하는데 Naver Clova CRAFT 모델을 사용하며, 위와 같이 CRAFT 모델 결과로 나온 score map 을 이용하여 Bounding Box 를 만듭니다.

STEP 4: Character-wise Text Detection - Cut Out Image

raw

STEP4 는 Bounding Box 좌표값을 바탕으로 STEP 2의 이미지에서 이미지를 잘라내는 과정입니다.

STEP 5: Character-wise Recognition

raw

raw

STEP 5 는 잘라낸 이미지를 글자로 변환하는 과정입니다.

다양한 폰트의 한글과 영어, 특수기호 이미지 데이터에 왜곡와 Blur 를 추가하여 학습한 모델을 사용하며, 각 Character 에 맞는 글자를 출력합니다.

STEP 6: Make Result File

raw

STEP 6 STEP 5 에서 Charater 단위로 출력한 글자를 조합하여 입력 이미지에 맞는 Word 를 출력하는 과정입니다.

HOW TO PREDICT

제출된 submission 폴더로 들어간 뒤, images 폴더 내에 새 폴더를 생성합니다. 이때, 새 폴더의 이름을 "test"라 하겠습니다.

~submission/$ cd images
~submission/images/$ mkdir test

새로 생성된 test 폴더에 이미지들을 넣습니다.

이후, 아래 코드를 실행합니다.

~/submission/$ myOCR_6STEP.py --input_tag test --output_tag first

이후, 코드는 예측을 시작하며, 결과파일은 아래 경로에 저장됩니다.

~/submission/result/test_first/result.csv

HOW TO TRAIN

본 대회 제출물에서 사용된 모델은 총 3개이며, 이 모델은 1개의 사전학습모델과 2개의 자체학습모델로 구성됩니다.

PRE-TRAINED

이미지에서 단일 Character를 인식해내는 모델은 NAVER 팀의 CRAFT 사전학습모델을 사용하였습니다. 이 모델은 이미지를 입력받아, 단일 Character의 중심점 위치를 판단할 수 있는 score map을 반환합니다. REFERENCE-CRAFT

TRAIN

GAN Image Generator

다양한 색상과 폰트, 크기를 가진 단어 이미지를 흑백 색상, 단일 폰트, 단일 크기를 가진 단어 이미지로 바꾸어주는 Image Generater Model 입니다. 이 모델에서는 전처리된 이미지를 사용합니다. 전처리의 경우 아래와 같이 진행합니다.

# TO DO

아래 위치에 각각 원본데이터와 새로 제작하고자 하는 이미지를 저장합니다.

~/submission/GAN_train/images_preprocessed # 원본 이미지
~/submission/GAN_train/images_trans(default font) # 출력하고자 하는 이미지

각각 위치에는, 실재 학습에 사용된 30060장의 데이터가 들어가 있습니다.

~/submission/$ cd GAN_train
~/submission/GAN_train/Full_train.py

Characterwise Image Recognizer

글자 인식 부분은 아래와 같이 학습 가능합니다.

~/submission/$ cd hangul-syllable-recognition
~/submission/hangul-syllable-recognition/$ python train.py

위 코드를 실행시키면 기존에 저정되어있는 학습용 이미지와 label로 학습을 시작하며, 일정 주기로 모델을 저장합니다.

~/submission/hangul-syllable-recognition/data/train_150000_F49/ # 학습용 이미지 저장소
~/submission/hangul-syllable-recognition/data/train_150000_F49.csv #학습용 이미지 정답 label
~/submission/hangul-syllable-recognition/saved_model/ #학습된 모델 저장 공간

학습용 이미지는 TRGD를 이용해 제작했으며, 상업적으로 이용 가능한 폰트 49종을 이용해 제작했습니다. 학습에 사용된 글자는 한글 KS X 1001 완성형 2350자와 영어 대소문자 52자, 특수기호 26자 (){}[]<>.'?!:+-/*=~@#$%^& 숫자 10자를 포함해 총 2438자를 학습했습니다.

REFERENCE-MODEL REFERENCE-TRDG

CONTRIBUTOR

고려대학교 김정기 ([email protected])

한양대학교 정혜영 ([email protected])

포항공과대학교 한주완 ([email protected])

Owner
Juwan HAN
Juwan HAN
本步态识别系统主要基于GaitSet模型进行实现

本步态识别系统主要基于GaitSet模型进行实现。在尝试部署本系统之前,建立理解GaitSet模型的网络结构、训练和推理方法。 系统的实现效果如视频所示: 演示视频 由于模型较大,部分模型文件存储在百度云盘。 链接提取码:33mb 具体部署过程 1.下载代码 2.安装requirements.txt

16 Oct 22, 2022
Python Rapid Artificial Intelligence Ab Initio Molecular Dynamics

Python Rapid Artificial Intelligence Ab Initio Molecular Dynamics

14 Nov 06, 2022
NVIDIA container runtime

nvidia-container-runtime A modified version of runc adding a custom pre-start hook to all containers. If environment variable NVIDIA_VISIBLE_DEVICES i

NVIDIA Corporation 938 Jan 06, 2023
⚓ Eurybia monitor model drift over time and securize model deployment with data validation

View Demo · Documentation · Medium article 🔍 Overview Eurybia is a Python library which aims to help in : Detecting data drift and model drift Valida

MAIF 172 Dec 27, 2022
Official Repo for ICCV2021 Paper: Learning to Regress Bodies from Images using Differentiable Semantic Rendering

[ICCV2021] Learning to Regress Bodies from Images using Differentiable Semantic Rendering Getting Started DSR has been implemented and tested on Ubunt

Sai Kumar Dwivedi 83 Nov 27, 2022
An official source code for "Augmentation-Free Self-Supervised Learning on Graphs"

Augmentation-Free Self-Supervised Learning on Graphs An official source code for Augmentation-Free Self-Supervised Learning on Graphs paper, accepted

Namkyeong Lee 59 Dec 01, 2022
EvDistill: Asynchronous Events to End-task Learning via Bidirectional Reconstruction-guided Cross-modal Knowledge Distillation (CVPR'21)

EvDistill: Asynchronous Events to End-task Learning via Bidirectional Reconstruction-guided Cross-modal Knowledge Distillation (CVPR'21) Citation If y

addisonwang 18 Nov 11, 2022
Invasive Plant Species Identification

Invasive_Plant_Species_Identification Used LiDAR Odometry and Mapping (LOAM) to create a 3D point cloud map which can be used to identify invasive pla

2 May 12, 2022
Self-supervised Augmentation Consistency for Adapting Semantic Segmentation (CVPR 2021)

Self-supervised Augmentation Consistency for Adapting Semantic Segmentation This repository contains the official implementation of our paper: Self-su

Visual Inference Lab @TU Darmstadt 132 Dec 21, 2022
Global Pooling, More than Meets the Eye: Position Information is Encoded Channel-Wise in CNNs, ICCV 2021

Global Pooling, More than Meets the Eye: Position Information is Encoded Channel-Wise in CNNs, ICCV 2021 Global Pooling, More than Meets the Eye: Posi

Md Amirul Islam 32 Apr 24, 2022
Fast, modular reference implementation and easy training of Semantic Segmentation algorithms in PyTorch.

TorchSeg This project aims at providing a fast, modular reference implementation for semantic segmentation models using PyTorch. Highlights Modular De

ycszen 1.4k Jan 02, 2023
An Open Source Machine Learning Framework for Everyone

Documentation TensorFlow is an end-to-end open source platform for machine learning. It has a comprehensive, flexible ecosystem of tools, libraries, a

170.1k Jan 04, 2023
Face Recognize System on camera AI OAK1

FRS on OAK1 Face Recognize System on camera OAK1 This project contains our work that deploy on camera OAK1 Features Anti-Spoofing Face detection Face

Tran Anh Tuan 6 Aug 08, 2022
Synthetic LiDAR sequential point cloud dataset with point-wise annotations

SynLiDAR dataset: Learning From Synthetic LiDAR Sequential Point Cloud This is official repository of the SynLiDAR dataset. For technical details, ple

78 Dec 27, 2022
Patch-Based Deep Autoencoder for Point Cloud Geometry Compression

Patch-Based Deep Autoencoder for Point Cloud Geometry Compression Overview The ever-increasing 3D application makes the point cloud compression unprec

17 Dec 05, 2022
Numerical Methods with Python, Numpy and Matplotlib

Numerical Bric-a-Brac Collections of numerical techniques with Python and standard computational packages (Numpy, SciPy, Numba, Matplotlib ...). Diffe

Vincent Bonnet 10 Dec 20, 2021
Complete U-net Implementation with keras

U Net Lowered with Keras Complete U-net Implementation with keras Original Paper Link : https://arxiv.org/abs/1505.04597 Special Implementations : The

Sagnik Roy 14 Oct 10, 2022
Implement the Pareto Optimizer and pcgrad to make a self-adaptive loss for multi-task

multi-task_losses_optimizer Implement the Pareto Optimizer and pcgrad to make a self-adaptive loss for multi-task 已经实验过了,不会有cuda out of memory情况 ##Par

14 Dec 25, 2022
Deep Learning Models for Causal Inference

Extensive tutorials for learning how to build deep learning models for causal inference using selection on observables in Tensorflow 2.

Bernard J Koch 151 Dec 31, 2022
PyTorch Implementation of Daft-Exprt: Robust Prosody Transfer Across Speakers for Expressive Speech Synthesis

PyTorch Implementation of Daft-Exprt: Robust Prosody Transfer Across Speakers for Expressive Speech Synthesis

Ubisoft 76 Dec 30, 2022