Zero-Shot Text-to-Image Generation VQGAN+CLIP Dockerized

Overview

VQGAN-CLIP-Docker

About

Zero-Shot Text-to-Image Generation VQGAN+CLIP Dockerized

This is a stripped and minimal dependency repository for running locally or in production VQGAN+CLIP.

For a Google Colab notebook see the original repository.

Samples

Setup

Clone this repository and cd inside.

git clone https://github.com/kcosta42/VQGAN-CLIP-Docker.git
cd VQGAN-CLIP-Docker

Download a VQGAN model and put it in the ./models folder.

Dataset Link
ImageNet (f=16), 16384 vqgan_imagenet_f16_16384

For GPU capability, make sure you have CUDA installed on your system (tested with CUDA 11.1+).

  • 6 GB of VRAM is required to generate 256x256 images.
  • 11 GB of VRAM is required to generate 512x512 images.
  • 24 GB of VRAM is required to generate 1024x1024 images. (Untested)

Local

Install the Python requirements

python3 -m pip install -r requirements.txt

To know if you can run this on your GPU, the following command must return True.

python3 -c "import torch; print(torch.cuda.is_available());"

Docker

Make sure you have docker and docker-compose installed. nvidia-docker is needed if you want to run this on your GPU through Docker.

A Makefile is provided for ease of use.

make build  # Build the docker image

Usage

Two configuration file are provided ./configs/local.json and ./configs/docker.json. They are ready to go, but you may want to edit them to meet your need. Check the Configuration section to understand each field.

The resulting generations can be found in the ./outputs folder.

GPU

To run locally:

python3 -m scripts.generate -c ./configs/local.json

To run on docker:

make generate

CPU

To run locally:

DEVICE=cpu python3 -m scripts.generate -c ./configs/local.json

To run on docker:

make generate-cpu

Configuration

Argument Type Descriptions
prompts List[str] Text prompts
image_prompts List[FilePath] Image prompts / target image path
max_iterations int Number of iterations
save_freq int Save image iterations
size [int, int] Image size (width height)
init_image FilePath Initial image
init_noise str Initial noise image ['gradient','pixels']
init_weight float Initial weight
output_dir FilePath Path to output directory
models_dir FilePath Path to models cache directory
clip_model FilePath CLIP model path or name
vqgan_checkpoint FilePath VQGAN checkpoint path
vqgan_config FilePath VQGAN config path
noise_prompt_seeds List[int] Noise prompt seeds
noise_prompt_weights List[float] Noise prompt weights
step_size float Learning rate
cutn int Number of cuts
cut_pow float Cut power
seed int Seed (-1 for random seed)
optimizer str Optimiser ['Adam','AdamW','Adagrad','Adamax','DiffGrad','AdamP','RAdam']
augments List[str] Enabled augments ['Ji','Sh','Gn','Pe','Ro','Af','Et','Ts','Cr','Er','Re']

Acknowledgments

VQGAN+CLIP

Taming Transformers

CLIP

DALLE-PyTorch

Citations

@misc{unpublished2021clip,
    title  = {CLIP: Connecting Text and Images},
    author = {Alec Radford, Ilya Sutskever, Jong Wook Kim, Gretchen Krueger, Sandhini Agarwal},
    year   = {2021}
}
@misc{esser2020taming,
      title={Taming Transformers for High-Resolution Image Synthesis},
      author={Patrick Esser and Robin Rombach and Björn Ommer},
      year={2020},
      eprint={2012.09841},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
@misc{ramesh2021zeroshot,
    title   = {Zero-Shot Text-to-Image Generation},
    author  = {Aditya Ramesh and Mikhail Pavlov and Gabriel Goh and Scott Gray and Chelsea Voss and Alec Radford and Mark Chen and Ilya Sutskever},
    year    = {2021},
    eprint  = {2102.12092},
    archivePrefix = {arXiv},
    primaryClass = {cs.CV}
}
Owner
Kevin Costa
Machine Learning Engineer. Previously Student @ 42 Paris
Kevin Costa
Protect against subdomain takeover

domain-protect scans Amazon Route53 across an AWS Organization for domain records vulnerable to takeover deploy to security audit account scan your en

OVO Technology 0 Nov 17, 2022
TSP: Temporally-Sensitive Pretraining of Video Encoders for Localization Tasks

TSP: Temporally-Sensitive Pretraining of Video Encoders for Localization Tasks [Paper] [Project Website] This repository holds the source code, pretra

Humam Alwassel 83 Dec 21, 2022
MixRNet(Using mixup as regularization and tuning hyper-parameters for ResNets)

MixRNet(Using mixup as regularization and tuning hyper-parameters for ResNets) Using mixup data augmentation as reguliraztion and tuning the hyper par

Bhanu 2 Jan 16, 2022
The official implementation of the Hybrid Self-Attention NEAT algorithm

PUREPLES - Pure Python Library for ES-HyperNEAT About This is a library of evolutionary algorithms with a focus on neuroevolution, implemented in pure

Adrian Westh 91 Dec 12, 2022
Robbing the FED: Directly Obtaining Private Data in Federated Learning with Modified Models

Robbing the FED: Directly Obtaining Private Data in Federated Learning with Modified Models This repo contains a barebones implementation for the atta

16 Dec 04, 2022
Jupyter notebooks for the code samples of the book "Deep Learning with Python"

Jupyter notebooks for the code samples of the book "Deep Learning with Python"

François Chollet 16.2k Dec 30, 2022
A transformer-based method for Healthcare Image Captioning in Vietnamese

vieCap4H Challenge 2021: A transformer-based method for Healthcare Image Captioning in Vietnamese This repo GitHub contains our solution for vieCap4H

Doanh B C 4 May 05, 2022
[CVPR 2021] Region-aware Adaptive Instance Normalization for Image Harmonization

RainNet — Official Pytorch Implementation Region-aware Adaptive Instance Normalization for Image Harmonization Jun Ling, Han Xue, Li Song*, Rong Xie,

130 Dec 11, 2022
Additional functionality for use with fastai’s medical imaging module

fmi Adding additional functionality to fastai's medical imaging module To learn more about medical imaging using Fastai you can view my blog Install g

14 Oct 31, 2022
Code repository for the work "Multi-Domain Incremental Learning for Semantic Segmentation", accepted at WACV 2022

Multi-Domain Incremental Learning for Semantic Segmentation This is the Pytorch implementation of our work "Multi-Domain Incremental Learning for Sema

Pgxo20 24 Jan 02, 2023
PyTorch implementation for our paper "Deep Facial Synthesis: A New Challenge"

FSGAN Here is the official PyTorch implementation for our paper "Deep Facial Synthesis: A New Challenge". This project achieve the translation between

Deng-Ping Fan 32 Oct 10, 2022
Sample code and notebooks for Vertex AI, the end-to-end machine learning platform on Google Cloud

Google Cloud Vertex AI Samples Welcome to the Google Cloud Vertex AI sample repository. Overview The repository contains notebooks and community conte

Google Cloud Platform 560 Dec 31, 2022
Classification Modeling: Probability of Default

Credit Risk Modeling in Python Introduction: If you've ever applied for a credit card or loan, you know that financial firms process your information

Aktham Momani 2 Nov 07, 2022
Arquitetura e Desenho de Software.

S203 Este é um repositório dedicado às aulas de Arquitetura e Desenho de Software, cuja sigla é "S203". E agora, José? Como não tenho muito a falar aq

Fabio 7 Oct 23, 2021
A modular, primitive-first, python-first PyTorch library for Reinforcement Learning.

TorchRL Disclaimer This library is not officially released yet and is subject to change. The features are available before an official release so that

Meta Research 860 Jan 07, 2023
This is a official repository of SimViT.

SimViT This is a official repository of SimViT. We will open our models and codes about object detection and semantic segmentation soon. Our code refe

ligang 57 Dec 15, 2022
Applying curriculum to meta-learning for few shot classification

Curriculum Meta-Learning for Few-shot Classification We propose an adaptation of the curriculum training framework, applicable to state-of-the-art met

Stergiadis Manos 3 Oct 25, 2022
Code for the IJCAI 2021 paper "Structure Guided Lane Detection"

SGNet Project for the IJCAI 2021 paper "Structure Guided Lane Detection" Abstract Recently, lane detection has made great progress with the rapid deve

Jinming Su 27 Dec 08, 2022
Action Segmentation Evaluation

Reference Action Segmentation Evaluation Code This repository contains the reference code for action segmentation evaluation. If you have a bug-fix/im

5 May 22, 2022
Breast cancer is been classified into benign tumour and malignant tumour.

Breast cancer is been classified into benign tumour and malignant tumour. Logistic regression is applied in this model.

1 Feb 04, 2022