Interactive convnet features visualization for Keras

Overview

Quiver

Gitter chat

Interactive convnet features visualization for Keras

gzqll3

The quiver workflow

Video Demo

  1. Build your model in keras

    model = Model(...)
  2. Launch the visualization dashboard with 1 line of code

    quiver_engine.server.launch(model, classes=['cat','dog'], input_folder='./imgs')
  3. Explore layer activations on all the different images in your input folder.

Quickstart

Installation

    pip install quiver_engine

If you want the latest version from the repo

    pip install git+git://github.com/keplr-io/quiver.git

Usage

Take your keras model, launching Quiver is a one-liner.

    from quiver_engine import server
    server.launch(model)

This will launch the visualization at localhost:5000

Options

    server.launch(
        model, # a Keras Model

        classes, # list of output classes from the model to present (if not specified 1000 ImageNet classes will be used)

        top, # number of top predictions to show in the gui (default 5)

        # where to store temporary files generatedby quiver (e.g. image files of layers)
        temp_folder='./tmp',

        # a folder where input images are stored
        input_folder='./',

        # the localhost port the dashboard is to be served on
        port=5000,
        # custom data mean
        mean=[123.568, 124.89, 111.56],
        # custom data standard deviation
        std=[52.85, 48.65, 51.56]
    )

Development

Building from master

Check out this repository and run

cd quiver_engine
python setup.py develop

Building the Client

    cd quiverboard
    npm install
    export QUIVER_URL=localhost:5000 # or whatever you set your port to be
    npm start

Note this will run your web application with webpack and hot reloading. If you don't care about that, or are only in this section because pip install somehow failed for you, you should tell it to simply build the javascript files instead

    npm run deploy:prod

Credits

  • This is essentially an implementation of some ideas of deepvis and related works.
  • A lot of the pre/pos/de processing code was taken from here and other writings of fchollet.
  • The dashboard makes use of react-redux-starter-kit

Citing Quiver

misc{bianquiver,
  title={Quiver},
  author={Bian, Jake},
  year={2016},
  publisher={GitHub},
  howpublished={\url{https://github.com/keplr-io/quiver}},
}
Python Library for Model Interpretation/Explanations

Skater Skater is a unified framework to enable Model Interpretation for all forms of model to help one build an Interpretable machine learning system

Oracle 1k Dec 27, 2022
Visualization Toolbox for Long Short Term Memory networks (LSTMs)

Visualization Toolbox for Long Short Term Memory networks (LSTMs)

Hendrik Strobelt 1.1k Jan 04, 2023
A python library for decision tree visualization and model interpretation.

dtreeviz : Decision Tree Visualization Description A python library for decision tree visualization and model interpretation. Currently supports sciki

Terence Parr 2.4k Jan 02, 2023
Visual Computing Group (Ulm University) 99 Nov 30, 2022
Portal is the fastest way to load and visualize your deep neural networks on images and videos ๐Ÿ”ฎ

Portal is the fastest way to load and visualize your deep neural networks on images and videos ๐Ÿ”ฎ

Datature 243 Jan 05, 2023
Pytorch Feature Map Extractor

MapExtrackt Convolutional Neural Networks Are Beautiful We all take our eyes for granted, we glance at an object for an instant and our brains can ide

Lewis Morris 40 Dec 07, 2022
Tool for visualizing attention in the Transformer model (BERT, GPT-2, Albert, XLNet, RoBERTa, CTRL, etc.)

Tool for visualizing attention in the Transformer model (BERT, GPT-2, Albert, XLNet, RoBERTa, CTRL, etc.)

Jesse Vig 4.7k Jan 01, 2023
๐Ÿ‘‹๐ŸฆŠ Xplique is a Python toolkit dedicated to explainability, currently based on Tensorflow.

๐Ÿ‘‹๐ŸฆŠ Xplique is a Python toolkit dedicated to explainability, currently based on Tensorflow.

DEEL 343 Jan 02, 2023
ModelChimp is an experiment tracker for Deep Learning and Machine Learning experiments.

ModelChimp What is ModelChimp? ModelChimp is an experiment tracker for Deep Learning and Machine Learning experiments. ModelChimp provides the followi

ModelChimp 124 Dec 21, 2022
Making decision trees competitive with neural networks on CIFAR10, CIFAR100, TinyImagenet200, Imagenet

Neural-Backed Decision Trees ยท Site ยท Paper ยท Blog ยท Video Alvin Wan, *Lisa Dunlap, *Daniel Ho, Jihan Yin, Scott Lee, Henry Jin, Suzanne Petryk, Sarah

Alvin Wan 556 Dec 20, 2022
Visualizer for neural network, deep learning, and machine learning models

Netron is a viewer for neural network, deep learning and machine learning models. Netron supports ONNX (.onnx, .pb, .pbtxt), Keras (.h5, .keras), Tens

Lutz Roeder 20.9k Dec 28, 2022
Summary Explorer is a tool to visually explore the state-of-the-art in text summarization.

Summary Explorer is a tool to visually explore the state-of-the-art in text summarization.

Webis 42 Aug 14, 2022
A library that implements fairness-aware machine learning algorithms

Themis ML themis-ml is a Python library built on top of pandas and sklearnthat implements fairness-aware machine learning algorithms. Fairness-aware M

Niels Bantilan 105 Dec 30, 2022
Neural network visualization toolkit for tf.keras

Neural network visualization toolkit for tf.keras

Yasuhiro Kubota 262 Dec 19, 2022
Convolutional neural network visualization techniques implemented in PyTorch.

This repository contains a number of convolutional neural network visualization techniques implemented in PyTorch.

1 Nov 06, 2021
TensorFlowTTS: Real-Time State-of-the-art Speech Synthesis for Tensorflow 2 (supported including English, Korean, Chinese, German and Easy to adapt for other languages)

๐Ÿคช TensorFlowTTS provides real-time state-of-the-art speech synthesis architectures such as Tacotron-2, Melgan, Multiband-Melgan, FastSpeech, FastSpeech2 based-on TensorFlow 2. With Tensorflow 2, we c

3k Jan 04, 2023
An intuitive library to add plotting functionality to scikit-learn objects.

Welcome to Scikit-plot Single line functions for detailed visualizations The quickest and easiest way to go from analysis... ...to this. Scikit-plot i

Reiichiro Nakano 2.3k Dec 31, 2022
pytorch implementation of "Distilling a Neural Network Into a Soft Decision Tree"

Soft-Decision-Tree Soft-Decision-Tree is the pytorch implementation of Distilling a Neural Network Into a Soft Decision Tree, paper recently published

Kim Heecheol 262 Dec 04, 2022
Using / reproducing ACD from the paper "Hierarchical interpretations for neural network predictions" ๐Ÿง  (ICLR 2019)

Hierarchical neural-net interpretations (ACD) ๐Ÿง  Produces hierarchical interpretations for a single prediction made by a pytorch neural network. Offic

Chandan Singh 111 Jan 03, 2023
Auralisation of learned features in CNN (for audio)

AuralisationCNN This repo is for an example of auralisastion of CNNs that is demonstrated on ISMIR 2015. Files auralise.py: includes all required func

Keunwoo Choi 39 Nov 19, 2022