Learning to compose soft prompts for compositional zero-shot learning.

Overview

Compositional Soft Prompting (CSP)

Compositional soft prompting (CSP), a parameter-efficient learning technique to improve the zero-shot compositionality of large-scale pretrained vision-language models (VLMs) without the overhead of fine-tuning the entire model.

Reference Paper: Learning to Compose Soft Prompts for Compositional Zero-Shot Learning

alt text

If you find CSP helpful, please cite our paper:

@article{csp2022,
  author = {Nayak, Nihal V. and Yu, Peilin and Bach, Stephen H.},
  title = {Learning to Compose Soft Prompts for Compositional Zero-Shot Learning},
  volume = {arXiv:2204.03574 [cs.LG]},
  year = {2022},
}

Setup

conda create --name clip python=3.7
conda activate clip
pip3 install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu113
pip3 install ftfy regex tqdm scipy pandas
pip3 install git+https://github.com/openai/CLIP.git

Alternatively, you can use pip install -r requirements.txt to install all the dependencies.

Download Dataset

We experiment with three datasets: MIT-States, UT-Zappos, and C-GQA.

sh download_data.sh

If you already have setup the datasets, you can use symlink and ensure the following paths exist: data/<dataset> where <datasets> = {'mit-states', 'ut-zappos', 'cgqa'}.

Training

python -u train.py \
  --dataset mit-states \
  --model ViT-L/14 \
  --experiment_name csp \
  --seed 0 \
  --epochs 20 \
  --lr 5e-05 \
  --attr_dropout 0.3 \
  --weight_decay 0.00001 \
  --train_batch_size 64 \
  --gradient_accumulation_steps 2 \
  --context_length 8 \
  --save_path data/model/mit-states/sample_model \
  --save_every_n 1

You can replace --dataset with {mit-states, ut-zappos, cgqa}. The best hyperparameters are included in the paper.

Evaluation

We evaluate our models in two settings: closed-world and open-world.

Closed-World Evaluation

python -u evaluate.py \
  --dataset mit-states \
  --soft_embeddings data/model/mit-states/sample_model/soft_embeddings_epoch_20.pt \
  --context_length 16 \
  --text_encoder_batch_size 36 \
  --eval_batch_size 16 \
  --experiment_name csp

Open-World Evaluation

For our open-world evaluation, we compute the feasbility calibration and then evaluate on the dataset.

Feasibility Calibration

We use GloVe embeddings to compute the similarities between objects and attributes. Download the GloVe embeddings in the data directory:

cd data
wget https://nlp.stanford.edu/data/glove.6B.zip

Move glove.6B.300d.txt into data/glove.6B.300d.txt.

To compute feasibility calibration for each dataset, run the following command:

python -u datasets/feasibility.py --dataset mit-states

The feasibility similarities are saved at data/feasibility_<dataset>.pt.

Evaluation

The open-world evaluation with the thresholds (feasibility calibration).

python -u evaluate.py \
  --dataset mit-states \
  --soft_embeddings data/model/mit-states/sample_model/soft_embeddings_epoch_5.pt \
  --context_length 16 \
  --text_encoder_batch_size 36 \
  --eval_batch_size 256 \
  --experiment_name czsl \
  --threshold <threshold> \
  --open_world

If <threshold> is None, then the model picks the best threshold on the validation set. We use the following thresholds:

Dataset Threshold
mit-states 0.4069159426
ut-zappos 0.5299109123
cgqa 0.49937106273612186

Note: We use 256GB of cpu memory to evaluate cgqa.

Generalization to Higher-Order Compositions

Evaluate the trained CSP vocabulary on the new AAO-MIT-States dataset.

python aao/evaluate_att_att_obj.py \
  --experiment_name csp \
  --soft_embeddings data/model/mit-states/sample_model/soft_embeddings_epoch_20.pt

We thank Andrew Delworth and Elise Carman for helping us annotate this dataset.

Generalization to Mixed Pretrained and Fine-Tuned Vocabulary

Ablation experiment to train and evaluate CSP with reduced fine-tuned vocabulary. We run experiment on the ut-zappos dataset.

Training

python -u mix/mix_train.py \
  --dataset ut-zappos \
  --model ViT-L/14 \
  --experiment_name mix_csp \
  --seed 0 \
  --epochs 20 \
  --lr 5e-04 \
  --attr_dropout 0.2 \
  --weight_decay 0.00001 \
  --train_batch_size 64 \
  --context_length 8 \
  --save_path data/model/ut-zappos/mix_train_model_0.25 \
  --save_every_n 5 \
  --attr_keep_ratio 0.25 \
  --gradient_accumulation_steps 2

We change the --attr_keep_ratio to {0.25, 0.50, 0.75}.

Evaluation

python -u mix/evaluate_mix_train.py \
  --dataset ut-zappos \
  --soft_embeddings data/model/ut-zappos/mix_train_model_0.25/soft_embeddings.pt \
  --context_length 16 \
  --text_encoder_batch_size 36 \
  --eval_batch_size 256 \
  --experiment_name csp

Credits

The project uses openly available model, code, and datasets. Please see the credits.

Owner
Bats Research
Bats Research
Dome - Subdomain Enumeration Tool. Fast and reliable python script that makes active and/or passive scan to obtain subdomains and search for open ports.

DOME - A subdomain enumeration tool Check the Spanish Version Dome is a fast and reliable python script that makes active and/or passive scan to obtai

Vadi 329 Jan 01, 2023
Lite version of my Gatekeeper backdoor for public use.

Gatekeeper Lite Backdoor Fully functioning bind-type backdoor This backdoor is a fully functioning bind shell and lite version of my full functioning

Joe Helle 56 Mar 25, 2022
Mass Shortlink Bypass Merupakan Tools Yang Akan Bypass Shortlink Ke Tujuan Asli, Dibuat Dengan Python 3

Shortlink-Bypass Mass Shortlink Bypass Merupakan Tools Yang Akan Bypass Shortlink Ke Tujuan Asli, Dibuat Dengan Python 3 Support Shortlink tii.ai/tei.

Wan Naz ID 6 Oct 24, 2022
Find existing email addresses by nickname using API/SMTP checking methods without user notification. Please, don't hesitate to improve cat's job! 🐱🔎 📬

mailcat The only cat who can find existing email addresses by nickname. Usage First install requirements: pip3 install -r requirements.txt Then just

282 Dec 30, 2022
automatically crawl every URL and find cross site scripting (XSS)

scancss Fastest tool to find XSS. scancss is a fastest tool to detect Cross Site scripting (XSS) automatically and it's also an intelligent payload ge

Md. Nur habib 30 Sep 24, 2022
Searches through git repositories for high entropy strings and secrets, digging deep into commit history

truffleHog Searches through git repositories for secrets, digging deep into commit history and branches. This is effective at finding secrets accident

Truffle Security 10.1k Jan 09, 2023
Dahua IPC/VTH/VTO devices auth bypass exploit

CVE-2021-33044 Dahua IPC/VTH/VTO devices auth bypass exploit About: The identity authentication bypass vulnerability found in some Dahua products duri

Ashish Kunwar 23 Dec 02, 2022
CVE-2021-45232-RCE-多线程批量漏洞检测

CVE-2021-45232-RCE CVE-2021-45232-RCE-多线程批量漏洞检测 FOFA 查询 title="Apache APISIX Das

孤桜懶契 36 Sep 21, 2022
S2-061 的payload,以及对应简单的PoC/Exp

S2-061 脚本皆根据vulhub的struts2-059/061漏洞测试环境来写的,不具普遍性,还望大佬多多指教 struts2-061-poc.py(可执行简单系统命令) 用法:python struts2-061-poc.py http://ip:port command 例子:python

dreamer 46 Oct 20, 2022
MVT is a forensic tool to look for signs of infection in smartphone devices

Mobile Verification Toolkit Mobile Verification Toolkit (MVT) is a collection of utilities to simplify and automate the process of gathering forensic

8.3k Jan 08, 2023
CVE-2021-36798 Exp: Cobalt Strike < 4.4 Dos

A denial of service (DoS) vulnerability (CVE-2021-36798) was found in Cobalt Strike. The vulnerability was fixed in the scope of the 4.4 release. More

104 Nov 09, 2022
一款辅助探测Orderby注入漏洞的BurpSuite插件,Python3编写,适用于上xray等扫描器被ban的场景

OrderbyHunter 一款辅助探测Orderby注入漏洞的BurpSuite插件,Python3编写,适用于上xray等扫描器被ban的场景 1. 支持Get/Post型请求参数的探测,被动探测,对于存在Orderby注入的请求将会在HTTP Histroy里标红 2. 自定义排序参数list

Automne 21 Aug 12, 2022
This program is a WiFi cracker, you can test many passwords for a desired wifi to find the wifi password!

WiFi_Cracker About the Program: This program is a WiFi cracker! Just run code and select a desired wifi to start cracking 💣 Note: you can use this pa

Sina.f 13 Dec 08, 2022
OpenSource Poc && Vulnerable-Target Storage Box.

reapoc OpenSource Poc && Vulnerable-Target Storage Box. We are aming to collect different normalized poc and the vulerable target to verify it. Now re

cckuailong 560 Dec 23, 2022
A Burp Pro extension that adds log4shell checks to Burp Scanner

scan4log4shell A Burp Pro extension that adds log4shell checks to Burp Scanner, written by Daniel Crowley of IBM X-Force Red. Installation To install

X-Force Red 26 Mar 15, 2022
Archive-Crack - A Tools for crack file archive

Install In TERMUX apt update && apt upgrade -y pkg install python git unrar

X - MrG3P5 10 Oct 06, 2022
Python Toolkit containing different Cyber Attacks Tools

Helikopter Python Toolkit containing different Cyber Attacks Tools. Tools in Helikopter Toolkit 1. FattyNigger (PYTHON WORM) 2. Taxes (PYTHON PASS EXT

Saqlain Naqvi 22 Dec 04, 2022
Exploiting CVE-2021-42278 and CVE-2021-42287 to impersonate DA from standard domain user

Exploiting CVE-2021-42278 and CVE-2021-42287 to impersonate DA from standard domain user Known issues it will not work outside kali , i will update it

Hossam 867 Dec 22, 2022
HatSploit collection of generic payloads designed to provide a wide range of attacks without having to spend time writing new ones.

HatSploit collection of generic payloads designed to provide a wide range of attacks without having to spend time writing new ones.

EntySec 5 May 10, 2022