PyTorch implemention of ICCV'21 paper SGPA: Structure-Guided Prior Adaptation for Category-Level 6D Object Pose Estimation

Related tags

Deep LearningSGPA
Overview

SGPA: Structure-Guided Prior Adaptation for Category-Level 6D Object Pose Estimation

This is the PyTorch implemention of ICCV'21 paper SGPA: Structure-Guided Prior Adaptation for Category-Level 6D Object Pose Estimation by Kai Chen and Qi Dou.

intro

Abstract

Category-level 6D object pose estimation aims to predict the position and orientation for unseen objects, which plays a pillar role in many scenarios such as robotics and augmented reality. The significant intra-class variation is the bottleneck challenge in this task yet remains unsolved so far. In this paper, we take advantage of category prior to overcome this problem by innovating a structure-guided prior adaptation scheme to accurately estimate 6D pose for individual objects. Different from existing prior based methods, given one object and its corresponding category prior, we propose to leverage their structure similarity to dynamically adapt the prior to the observed object. The prior adaptation intrinsically associates the adopted prior with different objects, from which we can accurately reconstruct the 3D canonical model of the specific object for pose estimation. To further enhance the structure characteristic of objects, we extract low-rank structure points from the dense object point cloud, therefore more efficiently incorporating sparse structural information during prior adaptation. Extensive experiments on CAMERA25 and REAL275 benchmarks demonstrate significant performance improvement.

Requirements

  • Linux (tested on Ubuntu 18.04)
  • Python 3.6+
  • CUDA 10.0
  • PyTorch 1.1.0

Installation

Conda virtual environment

We recommend using conda to setup the environment.

If you have already installed conda, please use the following commands.

conda create -n sgpa python=3.6
conda activate sgpa
pip install -r requirements.txt

Build PointNet++

cd SGPA/pointnet2/pointnet2
python setup.py install

Build nn_distance

cd SGPA/lib/nn_distance
python setup.py install

Dataset

Download camera_train, camera_val, real_train, real_test, ground-truth annotations and mesh models provided by NOCS.

Then, organize and preprocess these files following SPD. For a quick evaluation, we provide the processed testing data for REAL275. You can download it here and organize the testing data as follows:

SGPA
├── data
│   └── Real
│       ├──test
│       └──test_list.txt
└── results
    └── mrcnn_results
        └──real_test

Evaluation

Please download our trained model here and put it in the 'SGPA/model' directory. Then, you can have a quick evaluation on the REAL275 dataset using the following command.

bash eval.sh

Train

In order to train the model, remember to download the complete dataset, organize and preprocess the dataset properly at first.

train.py is the main file for training. You can simply start training using the following command.

bash train.sh

Citation

If you find the code useful, please cite our paper.

@inproceedings{chen2021sgpa,
  title={Sgpa: Structure-guided prior adaptation for category-level 6d object pose estimation},
  author={Chen, Kai and Dou, Qi},
  booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision},
  pages={2773--2782},
  year={2021}
}

Any questions, please feel free to contact Kai Chen ([email protected]).

Acknowledgment

The dataset is provided by NOCS. Our code is developed based on SPD and Pointnet2.PyTorch.

Owner
Chen Kai
Chen Kai
Nested Graph Neural Network (NGNN) is a general framework to improve a base GNN's expressive power and performance

Nested Graph Neural Networks About Nested Graph Neural Network (NGNN) is a general framework to improve a base GNN's expressive power and performance.

Muhan Zhang 38 Jan 05, 2023
One-Shot Neural Ensemble Architecture Search by Diversity-Guided Search Space Shrinking

One-Shot Neural Ensemble Architecture Search by Diversity-Guided Search Space Shrinking This is an official implementation for NEAS presented in CVPR

Multimedia Research 19 Sep 08, 2022
Research code for the paper "Variational Gibbs inference for statistical estimation from incomplete data".

Variational Gibbs inference (VGI) This repository contains the research code for Simkus, V., Rhodes, B., Gutmann, M. U., 2021. Variational Gibbs infer

Vaidotas Šimkus 1 Apr 08, 2022
Implementation of GeoDiff: a Geometric Diffusion Model for Molecular Conformation Generation (ICLR 2022).

GeoDiff: a Geometric Diffusion Model for Molecular Conformation Generation [OpenReview] [arXiv] [Code] The official implementation of GeoDiff: A Geome

Minkai Xu 155 Dec 26, 2022
Automatic voice-synthetised summaries of latest research papers on arXiv

PaperWhisperer PaperWhisperer is a Python application that keeps you up-to-date with research papers. How? It retrieves the latest articles from arXiv

Valerio Velardo 124 Dec 20, 2022
A trusty face recognition research platform developed by Tencent Youtu Lab

Introduction TFace: A trusty face recognition research platform developed by Tencent Youtu Lab. It provides a high-performance distributed training fr

Tencent 956 Jan 01, 2023
This is the PyTorch implementation of GANs N’ Roses: Stable, Controllable, Diverse Image to Image Translation

Official PyTorch repo for GAN's N' Roses. Diverse im2im and vid2vid selfie to anime translation.

1.1k Jan 01, 2023
a reimplementation of Optical Flow Estimation using a Spatial Pyramid Network in PyTorch

pytorch-spynet This is a personal reimplementation of SPyNet [1] using PyTorch. Should you be making use of this work, please cite the paper according

Simon Niklaus 269 Jan 02, 2023
Simple Python project using Opencv and datetime package to recognise faces and log attendance data in a csv file.

Attendance-System-based-on-Facial-recognition-Attendance-data-stored-in-csv-file- Simple Python project using Opencv and datetime package to recognise

3 Aug 09, 2022
Python/Rust implementations and notes from Proofs Arguments and Zero Knowledge

What is this? This is where I'll be collecting resources related to the Study Group on Dr. Justin Thaler's Proofs Arguments And Zero Knowledge Book. T

Thor 66 Jan 04, 2023
A machine learning malware analysis framework for Android apps.

🕵️ A machine learning malware analysis framework for Android apps. ☢️ DroidDetective is a Python tool for analysing Android applications (APKs) for p

James Stevenson 77 Dec 27, 2022
Python Library for Signal/Image Data Analysis with Transport Methods

PyTransKit Python Transport Based Signal Processing Toolkit Website and documentation: https://pytranskit.readthedocs.io/ Installation The library cou

24 Dec 23, 2022
LoL Runes Recommender With Python

LoL-Runes-Recommender Para ejecutar la aplicación se debe llamar a execute_app.p

Sebastián Salinas 1 Jan 10, 2022
[Link]mareteutral - pars tradg wth M []

pairs-trading-with-ML Jonathan Larkin, August 2017 One popular strategy classification is Pairs Trading. Though this category of strategies can exhibi

Jonathan Larkin 134 Jan 06, 2023
AgML is a comprehensive library for agricultural machine learning

AgML is a comprehensive library for agricultural machine learning. Currently, AgML provides access to a wealth of public agricultural datasets for common agricultural deep learning tasks.

Plant AI and Biophysics Lab 1 Jul 07, 2022
Playing around with FastAPI and streamlit to create a YoloV5 object detector

FastAPI-Streamlit-based-YoloV5-detector Playing around with FastAPI and streamlit to create a YoloV5 object detector It turns out that a User Interfac

2 Jan 20, 2022
Heterogeneous Deep Graph Infomax

Heterogeneous-Deep-Graph-Infomax Parameter Setting: HDGI-A: Node-level dimension: 16 Attention head: 4 Semantic-level attention vector: 8 learning rat

52 Oct 31, 2022
NR-GAN: Noise Robust Generative Adversarial Networks

Lexicon Enhanced Chinese Sequence Labeling Using BERT Adapter Code and checkpoints for the ACL2021 paper "Lexicon Enhanced Chinese Sequence Labelling

Takuhiro Kaneko 59 Dec 11, 2022
Simple Tensorflow implementation of "Adaptive Convolutions for Structure-Aware Style Transfer" (CVPR 2021)

AdaConv — Simple TensorFlow Implementation [Paper] : Adaptive Convolutions for Structure-Aware Style Transfer (CVPR 2021) Note This repository does no

Junho Kim 26 Nov 18, 2022
The official implementation of Equalization Loss for Long-Tailed Object Recognition (CVPR 2020) based on Detectron2

Equalization Loss for Long-Tailed Object Recognition Jingru Tan, Changbao Wang, Buyu Li, Quanquan Li, Wanli Ouyang, Changqing Yin, Junjie Yan ⚠️ We re

Jingru Tan 197 Dec 25, 2022