Official code for the paper "Why Do Self-Supervised Models Transfer? Investigating the Impact of Invariance on Downstream Tasks".

Overview

Why Do Self-Supervised Models Transfer? Investigating the Impact of Invariance on Downstream Tasks

This repository contains the official code for the paper Why Do Self-Supervised Models Transfer? Investigating the Impact of Invariance on Downstream Tasks.

Requirements

This codebase has been tested with the following package versions:

python=3.8.8
torch=1.9.0+cu102
torchvision=0.10.0+cu102
PIL=8.1.0
numpy=1.19.2
scipy=1.6.1
tqdm=4.57.0
sklearn=0.24.1
albumentations=1.0.3

Prepare data

There are several classes defined in the datasets directory. The data is expected in a directory name data, located on the same level as this repository. Below is an outline of the expected file structure:

data/
    imagenet/
    CIFAR10/
    300W/
    ...
ssl-invariances/
    datasets/
    models/
    readme.md
    ...

For synthetic invariance evaluation, get the ILSVRC2012 validation data from https://image-net.org/ and store in ../data/imagenet/val/.

For real-world invariances, download the following datasets: Flickr1024, COIL-100, ALOI, ALOT, DaLI, ExposureErrors, RealBlur.

For extrinsic invariances, get Causal3DIdent.

Finally, our downstream datasets are CIFAR10, Caltech101, Flowers, 300W, CelebA, LSPose.

Pre-training models

We pre-train several models based on the MoCo codebase.

To set up a version of the codebase that can pre-train our models, first clone the MoCo repo onto the same level as this repo:

git clone https://github.com/facebookresearch/moco

This should be the resulting file structure:

data/
ssl-invariances/
moco/

Then copy the files from ssl-invariances/pretraining/ into the cloned repo:

cp ssl-invariances/pretraining/* moco/

Finally, to run our models, enter the cloned repo by cd moco and run one of the following:

# train the Default model
python main_moco.py -a resnet50 --model default --lr 0.03 --batch-size 256 --mlp --moco-t 0.2 --cos --dist-url 'tcp://localhost:10001' --multiprocessing-distributed --world-size 1 --rank 0 ../data/imagenet

# train the Ventral model
python main_moco.py -a resnet50 --model ventral --lr 0.03 --batch-size 256 --mlp --moco-t 0.2 --cos --dist-url 'tcp://localhost:10001' --multiprocessing-distributed --world-size 1 --rank 0 ../data/imagenet

# train the Dorsal model
python main_moco.py -a resnet50 --model dorsal --lr 0.03 --batch-size 256 --mlp --moco-t 0.2 --cos --dist-url 'tcp://localhost:10001' --multiprocessing-distributed --world-size 1 --rank 0 ../data/imagenet

# train the Default(x3) model
python main_moco.py -a resnet50w3 --model default --moco-dim 384 --lr 0.03 --batch-size 256 --mlp --moco-t 0.2 --cos --dist-url 'tcp://localhost:10001' --multiprocessing-distributed --world-size 1 --rank 0 ../data/imagenet

This will train the models for 200 epochs and save checkpoints. When training has completed, the final model checkpoint, e.g. default_00199.pth.tar, should be moved to ssl-invariances/models/default.pth.tarfor use in evaluation in the below code.

The rest of this codebase assumes these final model checkpoints are located in a directory called ssl-invariances/models/ as shown below.

ssl-invariances/
    models/
        default.pth.tar
        default_w3.pth.tar
        dorsal.pth.tar
        ventral.pth.tar

Synthetic invariance

To evaluate the Default model on grayscale invariance, run:

python eval_synthetic_invariance.py --model default --transform grayscale ../data/imagenet

This will compute the mean and covariance of the model's feature space and save these statistics in the results/ directory. These are then used to speed up future invariance computations for the same model.

Real-world invariance

To evaluate the Ventral model on COIL100 viewpoint invariance, run:

python eval_realworld_invariance.py --model ventral --dataset COIL100

Extrinsic invariance on Causal3DIdent

To evaluate the Dorsal model on Causal3DIdent object x position prediction, run:

python eval_causal3dident.py --model dorsal --target 0

Downstream performance

To evaluate the combined Def+Ven+Dor model on 300W facial landmark regression, run:

python eval_downstream.py --model default+ventral+dorsal --dataset 300w

Citation

If you find our work useful for your research, please consider citing our paper:

@misc{ericsson2021selfsupervised,
      title={Why Do Self-Supervised Models Transfer? Investigating the Impact of Invariance on Downstream Tasks}, 
      author={Linus Ericsson and Henry Gouk and Timothy M. Hospedales},
      year={2021},
      eprint={2111.11398},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

If you have any questions, feel welcome to create an issue or contact Linus Ericsson ([email protected]).

Owner
Linus Ericsson
PhD student in the Data Science CDT at The University of Edinburgh
Linus Ericsson
S2s2net - Sentinel-2 Super-Resolution Segmentation Network

S2S2Net Sentinel-2 Super-Resolution Segmentation Network Getting started Install

Wei Ji 10 Nov 10, 2022
Robustness via Cross-Domain Ensembles

Robustness via Cross-Domain Ensembles [ICCV 2021, Oral] This repository contains tools for training and evaluating: Pretrained models Demo code Traini

Visual Intelligence & Learning Lab, Swiss Federal Institute of Technology (EPFL) 27 Dec 23, 2022
Bianace Prediction Pytorch Model

Bianace Prediction Pytorch Model Main Results ETHUSDT from 2021-01-01 00:00:00 t

RoyYang 4 Jul 20, 2022
A practical ML pipeline for data labeling with experiment tracking using DVC.

Auto Label Pipeline A practical ML pipeline for data labeling with experiment tracking using DVC Goals: Demonstrate reproducible ML Use DVC to build a

Todd Cook 4 Mar 08, 2022
Classifying cat and dog images using Kaggle dataset

PyTorch Image Classification Classifies an image as containing either a dog or a cat (using Kaggle's public dataset), but could easily be extended to

Robert Coleman 74 Nov 22, 2022
Repository for "Toward Practical Monocular Indoor Depth Estimation" (CVPR 2022)

Toward Practical Monocular Indoor Depth Estimation Cho-Ying Wu, Jialiang Wang, Michael Hall, Ulrich Neumann, Shuochen Su [arXiv] [project site] DistDe

Meta Research 122 Dec 13, 2022
Awesome Monocular 3D detection

Awesome Monocular 3D detection Paper list of 3D detetction, keep updating! Contents Paper List 2022 2021 2020 2019 2018 2017 2016 KITTI Results Paper

Zhikang Zou 184 Jan 04, 2023
A booklet on machine learning systems design with exercises

Machine Learning Systems Design Read this booklet here. This booklet covers four main steps of designing a machine learning system: Project setup Data

Chip Huyen 7.6k Jan 08, 2023
DWIPrep is a robust and easy-to-use pipeline for preprocessing of diverse dMRI data.

DWIPrep: A Robust Preprocessing Pipeline for dMRI Data DWIPrep is a robust and easy-to-use pipeline for preprocessing of diverse dMRI data. The transp

Gal Ben-Zvi 1 Jan 09, 2023
This is a simple backtesting framework to help you test your crypto currency trading. It includes a way to download and store historical crypto data and to execute a trading strategy.

You can use this simple crypto backtesting script to ensure your trading strategy is successful Minimal setup required and works well with static TP a

Andrei 154 Sep 12, 2022
Workshop Materials Delivered on 28/02/2022

intro-to-cnn-p1 Repo for hosting workshop materials delivered on 28/02/2022 Questions you will answer in this workshop Learning Objectives What are co

Beginners Machine Learning 5 Feb 28, 2022
Graph Convolutional Networks for Temporal Action Localization (ICCV2019)

Graph Convolutional Networks for Temporal Action Localization This repo holds the codes and models for the PGCN framework presented on ICCV 2019 Graph

Runhao Zeng 318 Dec 06, 2022
A hand tracking demo made with mediapipe where you can control lights with pinching your fingers and moving your hand up/down.

HandTrackingBrightnessControl A hand tracking demo made with mediapipe where you can control lights with pinching your fingers and moving your hand up

Teemu Laurila 19 Feb 12, 2022
Uses Open AI Gym environment to create autonomous cryptocurrency bot to trade cryptocurrencies.

Crypto_Bot Uses Open AI Gym environment to create autonomous cryptocurrency bot to trade cryptocurrencies. Steps to get started using the bot: Sign up

21 Oct 03, 2022
Python3 Implementation of (Subspace Constrained) Mean Shift Algorithm in Euclidean and Directional Product Spaces

(Subspace Constrained) Mean Shift Algorithms in Euclidean and/or Directional Product Spaces This repository contains Python3 code for the mean shift a

Yikun Zhang 0 Oct 19, 2021
A large-scale video dataset for the training and evaluation of 3D human pose estimation models

ASPset-510 ASPset-510 (Australian Sports Pose Dataset) is a large-scale video dataset for the training and evaluation of 3D human pose estimation mode

Aiden Nibali 36 Oct 30, 2022
Autoencoders pretraining using clustering

Autoencoders pretraining using clustering

IITiS PAN 2 Dec 16, 2021
This project provides the proof of the uniqueness of the equilibrium and the global asymptotic stability.

Delayed-cellular-neural-network This project provides the proof of the uniqueness of the equilibrium and the global asymptotic stability. There is als

4 Apr 28, 2022
Bayesian dessert for Lasagne

Gelato Bayesian dessert for Lasagne Recent results in Bayesian statistics for constructing robust neural networks have proved that it is one of the be

Maxim Kochurov 84 May 11, 2020
[3DV 2021] Channel-Wise Attention-Based Network for Self-Supervised Monocular Depth Estimation

Channel-Wise Attention-Based Network for Self-Supervised Monocular Depth Estimation This is the official implementation for the method described in Ch

Jiaxing Yan 27 Dec 30, 2022