Code for BMVC2021 paper "Boundary Guided Context Aggregation for Semantic Segmentation"

Overview

Boundary-Guided-Context-Aggregation

pipeline

Boundary Guided Context Aggregation for Semantic Segmentation

Haoxiang Ma, Hongyu Yang, Di Huang
In BMVC'2021

Paper

Introduction

This repository is official PyTorch implementation for our BMVC2021 paper. The code is based on semseg

Environments

  • Anaconda3
  • Python == 3.7.9
  • PyTorch == 1.7.1
  • CUDA ==11.0

Getting Started

Installation

git clone https://github.com/mahaoxiang822/Boundary-Guided-Context-Aggregation.git
cd Boundary-Guided-Context-Aggregation
conda create -n bcanet python=3.7
conda activate bcanet
conda install pytorch==1.7.1 torchvision==0.8.2 torchaudio==0.7.2 cudatoolkit=11.0 -c pytorch
pip install -r requirements.txt

Prepare Datasets

For Cityscapes, you can download from Cityscapes

For ADE20K, you can download from ADE20K

You should modify your dataset paths specified in folder config

Train

  • Download ImageNet pre-trained from GoogleDrive and put them under folder initmodel for weight initialization.
  • Specify the gpu used in config then do training:

Cityscapes

sh tool/train.sh cityscapes [bcanet50/bcanet101]

ADE20K

sh tool/trainade.sh ade20k [bcanet50/bcanet101]

Evaluation

  • Specify the gpu used in config and the checkpoint then do training:
  • You can download the pre-trained model on cityscapes from GoogleDrive

Validation on Cityscapes

sh tool/test.sh cityscapes [bcanet50/bcanet101]

Test on Cityscapes

sh tool/test.sh cityscapes [bcanet50/bcanet101]

Validation on ADE20K

sh tool/testade.sh ade20k [bcanet50/bcanet101]

Citation

If any part of our paper and repository is helpful to your work, please generously cite with:

@InProceedings{Ma_2021_BMVC,
    author    = {Haoxiang, Ma and Hongyu, Yang and Huang, Di},
    title     = {Boundary Guided Context Aggregation for Semantic Segmentation},
    booktitle = {The British Machine Vision Conference (BMVC)},
    month     = {November},
    year      = {2021}
Owner
Haoxiang Ma
Haoxiang Ma
This repository contains a PyTorch implementation of "AD-NeRF: Audio Driven Neural Radiance Fields for Talking Head Synthesis".

AD-NeRF: Audio Driven Neural Radiance Fields for Talking Head Synthesis | Project Page | Paper | PyTorch implementation for the paper "AD-NeRF: Audio

551 Dec 29, 2022
git《Investigating Loss Functions for Extreme Super-Resolution》(CVPR 2020) GitHub:

Investigating Loss Functions for Extreme Super-Resolution NTIRE 2020 Perceptual Extreme Super-Resolution Submission. Our method ranked first and secon

Sejong Yang 0 Oct 17, 2022
Ian Covert 130 Jan 01, 2023
This tool converts a Nondeterministic Finite Automata (NFA) into a Deterministic Finite Automata (DFA)

This tool converts a Nondeterministic Finite Automata (NFA) into a Deterministic Finite Automata (DFA)

Quinn Herden 1 Feb 04, 2022
Code for Ditto: Building Digital Twins of Articulated Objects from Interaction

Ditto: Building Digital Twins of Articulated Objects from Interaction Zhenyu Jiang, Cheng-Chun Hsu, Yuke Zhu CVPR 2022, Oral Project | arxiv News 2022

UT Robot Perception and Learning Lab 78 Dec 22, 2022
Implementation of neural class expression synthesizers

NCES Implementation of neural class expression synthesizers (NCES) Installation Clone this repository: https://github.com/ConceptLengthLearner/NCES.gi

NeuralConceptSynthesis 0 Jan 06, 2022
Deeplab-resnet-101 in Pytorch with Jaccard loss

Deeplab-resnet-101 Pytorch with Lovász hinge loss Train deeplab-resnet-101 with binary Jaccard loss surrogate, the Lovász hinge, as described in http:

Maxim Berman 95 Apr 15, 2022
Simple Text-Generator with OpenAI gpt-2 Pytorch Implementation

GPT2-Pytorch with Text-Generator Better Language Models and Their Implications Our model, called GPT-2 (a successor to GPT), was trained simply to pre

Tae-Hwan Jung 775 Jan 08, 2023
Some methods for comparing network representations in deep learning and neuroscience.

Generalized Shape Metrics on Neural Representations In neuroscience and in deep learning, quantifying the (dis)similarity of neural representations ac

Alex Williams 45 Dec 27, 2022
Adversarially Learned Inference

Adversarially Learned Inference Code for the Adversarially Learned Inference paper. Compiling the paper locally From the repo's root directory, $ cd p

Mohamed Ishmael Belghazi 308 Sep 24, 2022
Accelerate Neural Net Training by Progressively Freezing Layers

FreezeOut A simple technique to accelerate neural net training by progressively freezing layers. This repository contains code for the extended abstra

Andy Brock 203 Jun 19, 2022
Empowering journalists and whistleblowers

Onymochat Empowering journalists and whistleblowers Onymochat is an end-to-end encrypted, decentralized, anonymous chat application. You can also host

Samrat Dutta 19 Sep 02, 2022
Implementation of the master's thesis "Temporal copying and local hallucination for video inpainting".

Temporal copying and local hallucination for video inpainting This repository contains the implementation of my master's thesis "Temporal copying and

David Álvarez de la Torre 1 Dec 02, 2022
Yolov5-lite - Minimal PyTorch implementation of YOLOv5

Yolov5-Lite: Minimal YOLOv5 + Deep Sort Overview This repo is a shortened versio

Kadir Nar 57 Nov 28, 2022
This repository contains the code for the CVPR 2020 paper "Differentiable Volumetric Rendering: Learning Implicit 3D Representations without 3D Supervision"

Differentiable Volumetric Rendering Paper | Supplementary | Spotlight Video | Blog Entry | Presentation | Interactive Slides | Project Page This repos

697 Jan 06, 2023
An Intelligent Self-driving Truck System For Highway Transportation

Inceptio Intelligent Truck System An Intelligent Self-driving Truck System For Highway Transportation Note The code is still in development. OS requir

InceptioResearch 11 Jul 13, 2022
3D Pose Estimation for Vehicles

3D Pose Estimation for Vehicles Introduction This work generates 4 key-points and 2 key-edges from vertices and edges of vehicles as ground truth. The

Jingyi Wang 1 Nov 01, 2021
The Power of Scale for Parameter-Efficient Prompt Tuning

The Power of Scale for Parameter-Efficient Prompt Tuning Implementation of soft embeddings from https://arxiv.org/abs/2104.08691v1 using Pytorch and H

Kip Parker 208 Dec 30, 2022
MLPs for Vision and Langauge Modeling (Coming Soon)

MLP Architectures for Vision-and-Language Modeling: An Empirical Study MLP Architectures for Vision-and-Language Modeling: An Empirical Study (Code wi

Yixin Nie 27 May 09, 2022
Repository of best practices for deep learning in Julia, inspired by fastai

FastAI Docs: Stable | Dev FastAI.jl is inspired by fastai, and is a repository of best practices for deep learning in Julia. Its goal is to easily ena

FluxML 532 Jan 02, 2023