User friendly Rasterio plugin to read raster datasets.

Overview

rio-tiler

rio-tiler

User friendly Rasterio plugin to read raster datasets.

Test Coverage Package version Conda Forge Downloads Downloads Binder


Documentation: https://cogeotiff.github.io/rio-tiler/

Source Code: https://github.com/cogeotiff/rio-tiler


Description

rio-tiler was initialy designed to create slippy map tiles from large raster data sources and render these tiles dynamically on a web map. With rio-tiler v2.0 we added many more helper methods to read data and metadata from any raster source supported by Rasterio/GDAL. This includes local files and via HTTP, AWS S3, Google Cloud Storage, etc.

At the low level, rio-tiler is just a wrapper around the rasterio.vrt.WarpedVRT class, which can be useful for doing reprojection and/or property overriding (e.g nodata value).

Features

  • Read any dataset supported by GDAL/Rasterio

    from rio_tiler.io import COGReader
    
    with COGReader("my.tif") as image:
        print(image.dataset)  # rasterio opened dataset
        img = image.read()    # similar to rasterio.open("my.tif").read() but returns a rio_tiler.models.ImageData object
  • User friendly tile, part, feature, point reading methods

    from rio_tiler.io import COGReader
    
    with COGReader("my.tif") as image:
        img = image.tile(x, y, z)            # read mercator tile z-x-y
        img = image.part(bbox)               # read the data intersecting a bounding box
        img = image.feature(geojson_feature) # read the data intersecting a geojson feature
        img = image.point(lon,lat)           # get pixel values for a lon/lat coordinates
  • Enable property assignement (e.g nodata) on data reading

    from rio_tiler.io import COGReader
    
    with COGReader("my.tif") as image:
        img = image.tile(x, y, z, nodata=-9999) # read mercator tile z-x-y
  • STAC support

    from rio_tiler.io import STACReader
    
    with STACReader("item.json") as stac:
        print(stac.assets)  # available asset
        img = stac.tile(x, y, z, assets="asset1", indexes=(1, 2, 3))  # read tile for asset1 and indexes 1,2,3
        img = stac.tile(x, y, z, assets=("asset1", "asset2", "asset3",), indexes=(1,))  # create an image from assets 1,2,3 using their first band
  • Mosaic (merging or stacking)

    from rio_tiler.io import COGReader
    from rio_tiler.mosaic import mosaic_reader
    
    def reader(file, x, y, z, **kwargs):
        with COGReader("my.tif") as image:
            return image.tile(x, y, z, **kwargs)
    
    img, assets = mosaic_reader(["image1.tif", "image2.tif"], reader, x, y, z)
  • Native support for multiple TileMatrixSet via morecantile

    import morecantile
    from rio_tiler.io import COGReader
    
    # Use EPSG:4326 (WGS84) grid
    wgs84_grid = morecantile.tms.get("WorldCRS84Quad")
    with COGReader("my.tif", tms=wgs84_grid) as cog:
        img = cog.tile(1, 1, 1)

Install

You can install rio-tiler using pip

$ pip install -U pip
$ pip install -U rio-tiler

or install from source:

$ git clone https://github.com/cogeotiff/rio-tiler.git
$ cd rio-tiler
$ pip install -U pip
$ pip install -e .

GDAL>=3.0 / PROJ>=6.0 performances issue

rio-tiler is often used for dynamic tiling, where we need to perform small tasks involving cropping and reprojecting the input data. Starting with GDAL>=3.0 the project shifted to PROJ>=6, which introduced new ways to store projection metadata (using a SQLite database and/or cloud stored grids). This change introduced a performance regression as mentioned in https://mapserver.gis.umn.edu/id/development/rfc/ms-rfc-126.html:

using naively the equivalent calls proj_create_crs_to_crs() + proj_trans() would be a major performance killer, since proj_create_crs_to_crs() can take a time in the order of 100 milliseconds in the most complex situations.

We believe the issue reported in issues/346 is in fact due to ☝️ .

To get the best performances out of rio-tiler we recommend for now to use GDAL 2.4 until a solution can be found in GDAL or in PROJ.

Note: Starting with rasterio 1.2.0, rasterio's wheels are distributed with GDAL 3.2 and thus we recommend using rasterio==1.1.8 if using the default wheels, which include GDAL 2.4.

Links:

Plugins

rio-tiler-pds

rio-tiler v1 included several helpers for reading popular public datasets (e.g. Sentinel 2, Sentinel 1, Landsat 8, CBERS) from cloud providers. This functionality is now in a separate plugin, enabling easier access to more public datasets.

rio-tiler-mvt

Create Mapbox Vector Tiles from raster sources

Implementations

rio-viz: Visualize Cloud Optimized GeoTIFFs locally in the browser

titiler: A lightweight Cloud Optimized GeoTIFF dynamic tile server.

cogeo-mosaic: Create mosaics of Cloud Optimized GeoTIFF based on the mosaicJSON specification.

Contribution & Development

See CONTRIBUTING.md

Authors

The rio-tiler project was begun at Mapbox and was transferred to the cogeotiff Github organization in January 2019.

See AUTHORS.txt for a listing of individual contributors.

Changes

See CHANGES.md.

License

See LICENSE

Owner
Pushing for adoption of Cloud Optimized GeoTIFF: An imagery format for cloud-native geospatial processing
Interactive Maps with Geopandas

Create Interactive maps πŸ—ΊοΈ with your geodataframe Geopatra extends geopandas for interactive mapping and attempts to wrap the goodness of amazing map

sangarshanan 46 Aug 16, 2022
iNaturalist observations along hiking trails

This tool reads the route of a hike and generates a table of iNaturalist observations along the trails. It also shows the observations and the route of the hike on a map. Moreover, it saves waypoints

7 Nov 11, 2022
a Geolocator made in python

Geolocator A Geolocator made in python ✨ Features locates ur location using ur ip thats it! πŸ’β€β™€οΈ How to use first download the locator.py file instal

Portgas D Ace 1 Oct 27, 2021
Xarray backend to Copernicus Sentinel-1 satellite data products

xarray-sentinel WARNING: this product is a "technology preview" / pre-Alpha Xarray backend to explore and load Copernicus Sentinel-1 satellite data pr

B-Open 191 Dec 15, 2022
List of Land Cover datasets in the GEE Catalog

List of Land Cover datasets in the GEE Catalog A list of all the Land Cover (or discrete) datasets in Google Earth Engine. Values, Colors and Descript

David Montero Loaiza 5 Aug 24, 2022
Blender addons to make the bridge between Blender and geographic data

Blender GIS Blender minimal version : 2.8 Mac users warning : currently the addon does not work on Mac with Blender 2.80 to 2.82. Please do not report

5.9k Jan 02, 2023
Water Detect Algorithm

WaterDetect Synopsis WaterDetect is an end-to-end algorithm to generate open water cover mask, specially conceived for L2A Sentinel 2 imagery from MAJ

142 Dec 30, 2022
Geodata extensions for Django REST Framework

Django-Spillway Django and Django REST Framework integration of raster and feature based geodata. Spillway builds on the immensely marvelous Django RE

Brian Galey 62 Jan 04, 2023
Asynchronous Client for the worlds fastest in-memory geo-database Tile38

This is an asynchonous Python client for Tile38 that allows for fast and easy interaction with the worlds fastest in-memory geodatabase Tile38.

Ben 53 Dec 29, 2022
A Jupyter - Leaflet.js bridge

ipyleaflet A Jupyter / Leaflet bridge enabling interactive maps in the Jupyter notebook. Usage Selecting a basemap for a leaflet map: Loading a geojso

Jupyter Widgets 1.3k Dec 27, 2022
Python project to generate Kerala's distrcit level panchayath map.

Kerala-Panchayath-Maps Python project to generate Kerala's distrcit level panchayath map. As of now, geojson files of Kollam and Kozhikode are added t

Athul R T 2 Jan 10, 2022
Calculate & view the trajectory and live position of any earth-orbiting satellite

satellite-visualization A cross-platform application to calculate & view the trajectory and live position of any earth-orbiting satellite in 3D. This

Space Technology and Astronomy Cell - Open Source Society 3 Jan 08, 2022
peartree: A library for converting transit data into a directed graph for sketch network analysis.

peartree 🍐 🌳 peartree is a library for converting GTFS feed schedules into a representative directed network graph. The tool uses Partridge to conve

Kuan Butts 183 Dec 29, 2022
Spatial Interpolation Toolbox is a Python-based GUI that is able to interpolate spatial data in vector format.

Spatial Interpolation Toolbox This is the home to Spatial Interpolation Toolbox, a graphical user interface (GUI) for interpolating geographic vector

Michael Ward 2 Nov 01, 2021
Digital Earth Australia notebooks and tools repository

Repository for Digital Earth Australia Jupyter Notebooks: tools and workflows for geospatial analysis with Open Data Cube and xarray

Geoscience Australia 335 Dec 24, 2022
A Python framework for building geospatial web-applications

Hey there, this is Greppo... A Python framework for building geospatial web-applications. Greppo is an open-source Python framework that makes it easy

Greppo 304 Dec 27, 2022
This GUI app was created to show the detailed information about the weather in any city selected by user

WeatherApp Content Brief description Tools Features Hotkeys How it works Screenshots Ways to improve the project Installation Brief description This G

TheBugYouCantFix 5 Dec 30, 2022
Helping data scientists better understand their datasets and models in text classification. With love from ServiceNow.

Azimuth, an open-source dataset and error analysis tool for text classification, with love from ServiceNow. Overview Azimuth is an open source applica

ServiceNow 145 Dec 23, 2022
This is a simple python code to get IP address and its location using python

IP address & Location finder @DEV/ED : Pavan Ananth Sharma Dependencies: ip2geotools Note: use pip install ip2geotools to install this in your termin

Pavan Ananth Sharma 2 Jul 05, 2022
This repository contains the scripts to derivate the ENU and ECEF coordinates from the longitude, latitude, and altitude values encoded in the NAD83 coordinates.

This repository contains the scripts to derivate the ENU and ECEF coordinates from the longitude, latitude, and altitude values encoded in the NAD83 coordinates.

Luigi Cruz 1 Feb 07, 2022