Decorators for maximizing memory utilization with PyTorch & CUDA

Overview

torch-max-mem

Tests Cookiecutter template from @cthoyt PyPI PyPI - Python Version PyPI - License Documentation Status Code style: black

This package provides decorators for memory utilization maximization with PyTorch and CUDA by starting with a maximum parameter size and applying successive halving until no more out-of-memory exception occurs.

💪 Getting Started

Assume you have a function for batched computation of nearest neighbors using brute-force distance calculation.

import torch

def knn(x, y, batch_size, k: int = 3):
    return torch.cat(
        [
            torch.cdist(x[start : start + batch_size], y).topk(k=k, dim=1, largest=False).indices
            for start in range(0, x.shape[0], batch_size)
        ],
        dim=0,
    )

With torch_max_mem you can decorate this function to reduce the batch size until no more out-of-memory error occurs.

import torch
from torch_max_mem import maximize_memory_utilization


@maximize_memory_utilization(parameter_name="batch_size")
def knn(x, y, batch_size, k: int = 3):
    return torch.cat(
        [
            torch.cdist(x[start : start + batch_size], y).topk(k=k, dim=0, largest=False).indices
            for start in range(0, x.shape[0], batch_size)
        ],
        dim=0,
    )

In the code, you can now always pass the largest sensible batch size, e.g.,

x = torch.rand(100, 100, device="cuda")
y = torch.rand(200, 100, device="cuda")
knn(x, y, batch_size=x.shape[0])

🚀 Installation

The most recent release can be installed from PyPI with:

$ pip install torch_max_mem

The most recent code and data can be installed directly from GitHub with:

$ pip install git+https://github.com/mberr/torch-max-mem.git

To install in development mode, use the following:

$ git clone git+https://github.com/mberr/torch-max-mem.git
$ cd torch-max-mem
$ pip install -e .

👐 Contributing

Contributions, whether filing an issue, making a pull request, or forking, are appreciated. See CONTRIBUTING.md for more information on getting involved.

👋 Attribution

Parts of the logic have been developed with Laurent Vermue for PyKEEN.

⚖️ License

The code in this package is licensed under the MIT License.

🍪 Cookiecutter

This package was created with @audreyfeldroy's cookiecutter package using @cthoyt's cookiecutter-snekpack template.

🛠️ For Developers

See developer instrutions

The final section of the README is for if you want to get involved by making a code contribution.

🥼 Testing

After cloning the repository and installing tox with pip install tox, the unit tests in the tests/ folder can be run reproducibly with:

$ tox

Additionally, these tests are automatically re-run with each commit in a GitHub Action.

📖 Building the Documentation

$ tox -e docs

📦 Making a Release

After installing the package in development mode and installing tox with pip install tox, the commands for making a new release are contained within the finish environment in tox.ini. Run the following from the shell:

$ tox -e finish

This script does the following:

  1. Uses Bump2Version to switch the version number in the setup.cfg and src/torch_max_mem/version.py to not have the -dev suffix
  2. Packages the code in both a tar archive and a wheel
  3. Uploads to PyPI using twine. Be sure to have a .pypirc file configured to avoid the need for manual input at this step
  4. Push to GitHub. You'll need to make a release going with the commit where the version was bumped.
  5. Bump the version to the next patch. If you made big changes and want to bump the version by minor, you can use tox -e bumpversion minor after.
You might also like...
Picasso: A CUDA-based Library for Deep Learning over 3D Meshes

The Picasso Library is intended for complex real-world applications with large-scale surfaces, while it also performs impressively on the small-scale applications over synthetic shape manifolds. We have upgraded the point cloud modules of SPH3D-GCN from homogeneous to heterogeneous representations, and included the upgraded modules into this latest work as well. We are happy to announce that the work is accepted to IEEE CVPR2021.

This Repo is the official CUDA implementation of ICCV 2019 Oral paper for CARAFE: Content-Aware ReAssembly of FEatures

Introduction This Repo is the official CUDA implementation of ICCV 2019 Oral paper for CARAFE: Content-Aware ReAssembly of FEatures. @inproceedings{Wa

Example repository for custom C++/CUDA operators for TorchScript

Custom TorchScript Operators Example This repository contains examples for writing, compiling and using custom TorchScript operators. See here for the

Convert Python 3 code to CUDA code.

Py2CUDA Convert python code to CUDA. Usage To convert a python file say named py_file.py to CUDA, run python generate_cuda.py --file py_file.py --arch

This demo showcase the use of onnxruntime-rs with a GPU on CUDA 11 to run Bert in a data pipeline with Rust.

Demo BERT ONNX pipeline written in rust This demo showcase the use of onnxruntime-rs with a GPU on CUDA 11 to run Bert in a data pipeline with Rust. R

LightSeq is a high performance training and inference library for sequence processing and generation implemented in CUDA
CUDA Python Low-level Bindings

CUDA Python Low-level Bindings

A dead simple python wrapper for darknet that works with OpenCV 4.1, CUDA 10.1

What Dead simple python wrapper for Yolo V3 using AlexyAB's darknet fork. Works with CUDA 10.1 and OpenCV 4.1 or later (I use OpenCV master as of Jun

An addernet CUDA version

Training addernet accelerated by CUDA Usage cd adder_cuda python setup.py install cd .. python main.py Environment pytorch 1.10.0 CUDA 11.3 benchmark

Comments
  • Import error

    Import error

    When trying to run the example from the README, I currently get the following error

    Traceback (most recent call last):
      File ".../torch_max_mem/tmp.py", line 2, in <module>
        from torch_max_mem import maximize_memory_utilization
    ModuleNotFoundError: No module named 'torch_max_mem'
    

    When I check pip list, the package name appears to be the stylized name

    $ pip list | grep max
    torch-max-mem     0.0.1.dev0 .../torch_max_mem/src
    
    opened by mberr 2
  • Add simplified key hasher

    Add simplified key hasher

    This PR adds a simplification for creating hashers based on the values associated to a subse of keys without having to define a lambda or named function.

    opened by mberr 1
  • Code fails for KEYWORD_ONLY params

    Code fails for KEYWORD_ONLY params

    The following snippet

    from torch_max_mem import maximize_memory_utilization
    
    
    @maximize_memory_utilization()
    def func(a, *bs, batch_size: int):
        pass
    

    raises an error

    Traceback (most recent call last):
      File ".../tmp.py", line 5, in <module>
        def func(a, *bs, batch_size: int):
      File ".../venv/venv-cpu/lib/python3.8/site-packages/torch_max_mem/api.py", line 274, in __call__
        wrapped = maximize_memory_utilization_decorator(
      File ".../venv/venv-cpu/lib/python3.8/site-packages/torch_max_mem/api.py", line 150, in decorator_maximize_memory_utilization
        raise ValueError(f"{parameter_name} must be a keyword based parameter, but is {_parameter.kind}.")
    ValueError: batch_size must be a keyword based parameter, but is KEYWORD_ONLY.
    

    since _parameter.kind is KEYWORD_ONLY.

    This is overly restrictive, since we only need keyword-based parameters.

    opened by mberr 0
  • stateful decorator

    stateful decorator

    Add a decorator which remembers to maximum parameter value for next time. Since this is handled internally, we do not need to expose the found parameter value to the outside, leaving the method signature unchanged.

    opened by mberr 0
Releases(v0.0.4)
  • v0.0.4(Aug 18, 2022)

    What's Changed

    • Fix ad hoc key hashing by @mberr in https://github.com/mberr/torch-max-mem/pull/7
    • Fix default value handling by @mberr in https://github.com/mberr/torch-max-mem/pull/8

    Full Changelog: https://github.com/mberr/torch-max-mem/compare/v0.0.3...v0.0.4

    Source code(tar.gz)
    Source code(zip)
  • v0.0.3(Aug 18, 2022)

    What's Changed

    • Fix keyword only params by @mberr in https://github.com/mberr/torch-max-mem/pull/6

    Full Changelog: https://github.com/mberr/torch-max-mem/compare/v0.0.2...v0.0.3

    Source code(tar.gz)
    Source code(zip)
  • v0.0.2(May 6, 2022)

    What's Changed

    • Add simplified key hasher by @mberr in https://github.com/mberr/torch-max-mem/pull/3
    • Update README & doc by @mberr in https://github.com/mberr/torch-max-mem/pull/4

    Full Changelog: https://github.com/mberr/torch-max-mem/compare/v0.0.1...v0.0.2

    Source code(tar.gz)
    Source code(zip)
  • v0.0.1(Feb 1, 2022)

PyTorch implementation of the NIPS-17 paper "Poincaré Embeddings for Learning Hierarchical Representations"

Poincaré Embeddings for Learning Hierarchical Representations PyTorch implementation of Poincaré Embeddings for Learning Hierarchical Representations

Facebook Research 1.6k Dec 25, 2022
This repository is dedicated to developing and maintaining code for experiments with wide neural networks.

Wide-Networks This repository contains the code of various experiments on wide neural networks. In particular, we implement classes for abc-parameteri

Karl Hajjar 0 Nov 02, 2021
[TPAMI 2021] iOD: Incremental Object Detection via Meta-Learning

Incremental Object Detection via Meta-Learning To appear in an upcoming issue of the IEEE Transactions on Pattern Analysis and Machine Intelligence (T

Joseph K J 66 Jan 04, 2023
💡 Learnergy is a Python library for energy-based machine learning models.

Learnergy: Energy-based Machine Learners Welcome to Learnergy. Did you ever reach a bottleneck in your computational experiments? Are you tired of imp

Gustavo Rosa 57 Nov 17, 2022
Our VMAgent is a platform for exploiting Reinforcement Learning (RL) on Virtual Machine (VM) scheduling tasks.

VMAgent is a platform for exploiting Reinforcement Learning (RL) on Virtual Machine (VM) scheduling tasks. VMAgent is constructed based on one month r

56 Dec 12, 2022
Optimized Gillespie algorithm for simulating Stochastic sPAtial models of Cancer Evolution (OG-SPACE)

OG-SPACE Introduction Optimized Gillespie algorithm for simulating Stochastic sPAtial models of Cancer Evolution (OG-SPACE) is a computational framewo

Data and Computational Biology Group UNIMIB (was BI*oinformatics MI*lan B*icocca) 0 Nov 17, 2021
Luminous is a framework for testing the performance of Embodied AI (EAI) models in indoor tasks.

Luminous is a framework for testing the performance of Embodied AI (EAI) models in indoor tasks. Generally, we intergrete different kind of functional

28 Jan 08, 2023
deep learning for image processing including classification and object-detection etc.

深度学习在图像处理中的应用教程 前言 本教程是对本人研究生期间的研究内容进行整理总结,总结的同时也希望能够帮助更多的小伙伴。后期如果有学习到新的知识也会与大家一起分享。 本教程会以视频的方式进行分享,教学流程如下: 1)介绍网络的结构与创新点 2)使用Pytorch进行网络的搭建与训练 3)使用Te

WuZhe 13.6k Jan 04, 2023
DSEE: Dually Sparsity-embedded Efficient Tuning of Pre-trained Language Models

DSEE Codes for [Preprint] DSEE: Dually Sparsity-embedded Efficient Tuning of Pre-trained Language Models Xuxi Chen, Tianlong Chen, Yu Cheng, Weizhu Ch

VITA 4 Dec 27, 2021
Contrastive Learning with Non-Semantic Negatives

Contrastive Learning with Non-Semantic Negatives This repository is the official implementation of Robust Contrastive Learning Using Negative Samples

39 Jul 31, 2022
YOLOV4运行在嵌入式设备上

在嵌入式设备上实现YOLO V4 tiny 在嵌入式设备上实现YOLO V4 tiny 目录结构 目录结构 |-- YOLO V4 tiny |-- .gitignore |-- LICENSE |-- README.md |-- test.txt |-- t

Liu-Wei 6 Sep 09, 2021
Third party Pytorch implement of Image Processing Transformer (Pre-Trained Image Processing Transformer arXiv:2012.00364v2)

ImageProcessingTransformer Third party Pytorch implement of Image Processing Transformer (Pre-Trained Image Processing Transformer arXiv:2012.00364v2)

61 Jan 01, 2023
OstrichRL: A Musculoskeletal Ostrich Simulation to Study Bio-mechanical Locomotion.

OstrichRL This is the repository accompanying the paper OstrichRL: A Musculoskeletal Ostrich Simulation to Study Bio-mechanical Locomotion. It contain

Vittorio La Barbera 51 Nov 17, 2022
A simple log parser and summariser for IIS web server logs

IISLogFileParser A basic parser tool for IIS Logs which summarises findings from the log file. Inspired by the Gist https://gist.github.com/wh13371/e7

2 Mar 26, 2022
ADGAN - The Implementation of paper Controllable Person Image Synthesis with Attribute-Decomposed GAN

ADGAN - The Implementation of paper Controllable Person Image Synthesis with Attribute-Decomposed GAN CVPR 2020 (Oral); Pose and Appearance Attributes Transfer;

Men Yifang 400 Dec 29, 2022
Get 2D point positions (e.g., facial landmarks) projected on 3D mesh

points2d_projection_mesh Input 2D points (e.g. facial landmarks) on an image Camera parameters (extrinsic and intrinsic) of the image Aligned 3D mesh

5 Dec 08, 2022
Code for the paper "Reinforced Active Learning for Image Segmentation"

Reinforced Active Learning for Image Segmentation (RALIS) Code for the paper Reinforced Active Learning for Image Segmentation Dependencies python 3.6

Arantxa Casanova 79 Dec 19, 2022
CLIPImageClassifier wraps clip image model from transformers

CLIPImageClassifier CLIPImageClassifier wraps clip image model from transformers. CLIPImageClassifier is initialized with the argument classes, these

Jina AI 6 Sep 12, 2022
Official code repository for A Simple Long-Tailed Rocognition Baseline via Vision-Language Model.

This is the official code repository for A Simple Long-Tailed Rocognition Baseline via Vision-Language Model.

peng gao 42 Nov 26, 2022
AfriBERTa: Exploring the Viability of Pretrained Multilingual Language Models for Low-resourced Languages

AfriBERTa: Exploring the Viability of Pretrained Multilingual Language Models for Low-resourced Languages This repository contains the code for the pa

Kelechi 40 Nov 24, 2022