Revisiting Global Statistics Aggregation for Improving Image Restoration

Related tags

Deep Learningtlsc
Overview

PWC PWC

Revisiting Global Statistics Aggregation for Improving Image Restoration

Xiaojie Chu, Liangyu Chen, Chengpeng Chen, Xin Lu

Paper: https://arxiv.org/pdf/2112.04491.pdf

Introduction

This repository is an official implementation of the TLSC. We propose Test-time Local Statistics Converter (TLSC), which replaces the statistic aggregation region from the entire spatial dimension to the local window, to mitigate the issue between training and testing. Our approach has no requirement of retraining or finetuning, and only induces marginal extra costs.

arch

Illustration of training and testing schemes of image restoration. From left to right: image from the dataset; input for the restorer (patches or entire-image depend on the scheme); aggregating statistics from the feature map. For (a), (b), and (c), statistics are aggregated along the entire spatial dimension. (d) Ours, statistics are aggregated in a local region for each pixel.

Abstract

Global spatial statistics, which are aggregated along entire spatial dimensions, are widely used in top-performance image restorers. For example, mean, variance in Instance Normalization (IN) which is adopted by HINet, and global average pooling (ie, mean) in Squeeze and Excitation (SE) which is applied to MPRNet. This paper first shows that statistics aggregated on the patches-based/entire-image-based feature in the training/testing phase respectively may distribute very differently and lead to performance degradation in image restorers. It has been widely overlooked by previous works. To solve this issue, we propose a simple approach, Test-time Local Statistics Converter (TLSC), that replaces the region of statistics aggregation operation from global to local, only in the test time. Without retraining or finetuning, our approach significantly improves the image restorer's performance. In particular, by extending SE with TLSC to the state-of-the-art models, MPRNet boost by 0.65 dB in PSNR on GoPro dataset, achieves 33.31 dB, exceeds the previous best result 0.6 dB. In addition, we simply apply TLSC to the high-level vision task, ie, semantic segmentation, and achieves competitive results. Extensive quantity and quality experiments are conducted to demonstrate TLSC solves the issue with marginal costs while significant gain.

Usage

Installation

This implementation based on BasicSR which is a open source toolbox for image/video restoration tasks.

git clone https://github.com/megvii-research/tlsc.git
cd tlsc
pip install -r requirements.txt
python setup.py develop

Quick Start (Single Image Inference)

Main Results

Method GoPro GoPro HIDE HIDE REDS REDS
PSNR SSIM PSNR SSIM PSNR SSIM
HINet 32.71 0.959 30.33 0.932 28.83 0.863
HINet-local (ours) 33.08 0.962 30.66 0.936 28.96 0.865
MPRNet 32.66 0.959 30.96 0.939 - -
MPRNet-local (ours) 33.31 0.964 31.19 0.942 - -

Evaluation

Image Deblur - GoPro dataset (Click to expand)
  • prepare data

    • mkdir ./datasets/GoPro

    • download the test set in ./datasets/GoPro/test (refer to MPRNet)

    • it should be like:

      ./datasets/
      ./datasets/GoPro/test/
      ./datasets/GoPro/test/input/
      ./datasets/GoPro/test/target/
  • eval

    • download pretrained HINet to ./experiments/pretrained_models/HINet-GoPro.pth

    • python basicsr/test.py -opt options/test/HIDE/MPRNetLocal-HIDE.yml

    • download pretrained MPRNet to ./experiments/pretrained_models/MPRNet-GoPro.pth

    • python basicsr/test.py -opt options/test/HIDE/MPRNetLocal-HIDE.yml

Image Deblur - HIDE dataset (Click to expand)
  • prepare data

    • mkdir ./datasets/HIDE

    • download the test set in ./datasets/HIDE/test (refer to MPRNet)

    • it should be like:

      ./datasets/
      ./datasets/HIDE/test/
      ./datasets/HIDE/test/input/
      ./datasets/HIDE/test/target/
  • eval

    • download pretrained HINet to ./experiments/pretrained_models/HINet-GoPro.pth

    • python basicsr/test.py -opt options/test/GoPro/MPRNetLocal-GoPro.yml

    • download pretrained MPRNet to ./experiments/pretrained_models/MPRNet-GoPro.pth

    • python basicsr/test.py -opt options/test/GoPro/MPRNetLocal-GoPro.yml

Image Deblur - REDS dataset (Click to expand)
  • prepare data

    • mkdir ./datasets/REDS

    • download the val set from val_blur, val_sharp to ./datasets/REDS/ and unzip them.

    • it should be like

      ./datasets/
      ./datasets/REDS/
      ./datasets/REDS/val/
      ./datasets/REDS/val/val_blur_jpeg/
      ./datasets/REDS/val/val_sharp/
      
    • python scripts/data_preparation/reds.py

      • flatten the folders and extract 300 validation images.
  • eval

    • download pretrained HINet to ./experiments/pretrained_models/HINet-REDS.pth
    • python basicsr/test.py -opt options/test/REDS/HINetLocal-REDS.yml

Tricks: Change the 'fast_imp: false' (naive implementation) to 'fast_imp: true' (faster implementation) in MPRNetLocal config can achieve faster inference speed.

License

This project is under the MIT license, and it is based on BasicSR which is under the Apache 2.0 license.

Citations

If TLSC helps your research or work, please consider citing TLSC.

@article{chu2021tlsc,
  title={Revisiting Global Statistics Aggregation for Improving Image Restoration},
  author={Chu, Xiaojie and Chen, Liangyu and and Chen, Chengpeng and Lu, Xin},
  journal={arXiv preprint arXiv:2112.04491},
  year={2021}
}

Contact

If you have any questions, please contact [email protected] or [email protected].

Owner
MEGVII Research
Power Human with AI. 持续创新拓展认知边界 非凡科技成就产品价值
MEGVII Research
Official PaddlePaddle implementation of Paint Transformer

Paint Transformer: Feed Forward Neural Painting with Stroke Prediction [Paper] [Paddle Implementation] Update We have optimized the serial inference p

TianweiLin 284 Dec 31, 2022
VIL-100: A New Dataset and A Baseline Model for Video Instance Lane Detection (ICCV 2021)

Preparation Please see dataset/README.md to get more details about our datasets-VIL100 Please see INSTALL.md to install environment and evaluation too

82 Dec 15, 2022
Official Python implementation of the 'Sparse deconvolution'-v0.3.0

Sparse deconvolution Python v0.3.0 Official Python implementation of the 'Sparse deconvolution', and the CPU (NumPy) and GPU (CuPy) calculation backen

Weisong Zhao 23 Dec 28, 2022
Unofficial pytorch implementation of paper "One-Shot Free-View Neural Talking-Head Synthesis for Video Conferencing"

One-Shot Free-View Neural Talking Head Synthesis Unofficial pytorch implementation of paper "One-Shot Free-View Neural Talking-Head Synthesis for Vide

ZLH 406 Dec 23, 2022
Kaggle DSTL Satellite Imagery Feature Detection

Kaggle DSTL Satellite Imagery Feature Detection

Konstantin Lopuhin 206 Oct 29, 2022
code for Image Manipulation Detection by Multi-View Multi-Scale Supervision

MVSS-Net Code and models for ICCV 2021 paper: Image Manipulation Detection by Multi-View Multi-Scale Supervision Update 22.02.17, Pretrained model for

dong_chengbo 131 Dec 30, 2022
[CVPR 2021] Unsupervised Degradation Representation Learning for Blind Super-Resolution

DASR Pytorch implementation of "Unsupervised Degradation Representation Learning for Blind Super-Resolution", CVPR 2021 [arXiv] Overview Requirements

Longguang Wang 318 Dec 24, 2022
Checkout some cool self-projects you can try your hands on to curb your boredom this December!

SoC-Winter Checkout some cool self-projects you can try your hands on to curb your boredom this December! These are short projects that you can do you

Web and Coding Club, IIT Bombay 29 Nov 08, 2022
SAMO: Streaming Architecture Mapping Optimisation

SAMO: Streaming Architecture Mapping Optimiser The SAMO framework provides a method of optimising the mapping of a Convolutional Neural Network model

Alexander Montgomerie-Corcoran 20 Dec 10, 2022
SIR model parameter estimation using a novel algorithm for differentiated uniformization.

TenSIR Parameter estimation on epidemic data under the SIR model using a novel algorithm for differentiated uniformization of Markov transition rate m

The Spang Lab 4 Nov 30, 2022
This is the official pytorch implementation for the paper: Instance Similarity Learning for Unsupervised Feature Representation.

ISL This is the official pytorch implementation for the paper: Instance Similarity Learning for Unsupervised Feature Representation, which is accepted

19 May 04, 2022
A PyTorch implementation of a Factorization Machine module in cython.

fmpytorch A library for factorization machines in pytorch. A factorization machine is like a linear model, except multiplicative interaction terms bet

Jack Hessel 167 Jul 06, 2022
A minimalist environment for decision-making in autonomous driving

highway-env A collection of environments for autonomous driving and tactical decision-making tasks An episode of one of the environments available in

Edouard Leurent 1.6k Jan 07, 2023
Code for the paper SphereRPN: Learning Spheres for High-Quality Region Proposals on 3D Point Clouds Object Detection, ICIP 2021.

SphereRPN Code for the paper SphereRPN: Learning Spheres for High-Quality Region Proposals on 3D Point Clouds Object Detection, ICIP 2021. Authors: Th

Thang Vu 15 Dec 02, 2022
LocUNet is a deep learning method to localize a UE based solely on the reported signal strengths from a set of BSs.

LocUNet LocUNet is a deep learning method to localize a UE based solely on the reported signal strengths from a set of BSs. The method utilizes accura

4 Oct 05, 2022
Teaching end to end workflow of deep learning

Deep-Education This repository is now available for public use for teaching end to end workflow of deep learning. This implies that learners/researche

Data Lab at College of William and Mary 2 Sep 26, 2022
GitHub repository for the ICLR Computational Geometry & Topology Challenge 2021

ICLR Computational Geometry & Topology Challenge 2022 Welcome to the ICLR 2022 Computational Geometry & Topology challenge 2022 --- by the ICLR 2022 W

42 Dec 13, 2022
Breast cancer is been classified into benign tumour and malignant tumour.

Breast cancer is been classified into benign tumour and malignant tumour. Logistic regression is applied in this model.

1 Feb 04, 2022
A big endian Gentoo port developed on a Pine64.org RockPro64

Gentoo-aarch64_be A big endian Gentoo port developed on a Pine64.org RockPro64 The endian wars are over... little endian won. As a result, it is incre

Rory Bolt 6 Dec 07, 2022
Towards Rolling Shutter Correction and Deblurring in Dynamic Scenes (CVPR2021)

RSCD (BS-RSCD & JCD) Towards Rolling Shutter Correction and Deblurring in Dynamic Scenes (CVPR2021) by Zhihang Zhong, Yinqiang Zheng, Imari Sato We co

81 Dec 15, 2022