Revisiting Global Statistics Aggregation for Improving Image Restoration

Related tags

Deep Learningtlsc
Overview

PWC PWC

Revisiting Global Statistics Aggregation for Improving Image Restoration

Xiaojie Chu, Liangyu Chen, Chengpeng Chen, Xin Lu

Paper: https://arxiv.org/pdf/2112.04491.pdf

Introduction

This repository is an official implementation of the TLSC. We propose Test-time Local Statistics Converter (TLSC), which replaces the statistic aggregation region from the entire spatial dimension to the local window, to mitigate the issue between training and testing. Our approach has no requirement of retraining or finetuning, and only induces marginal extra costs.

arch

Illustration of training and testing schemes of image restoration. From left to right: image from the dataset; input for the restorer (patches or entire-image depend on the scheme); aggregating statistics from the feature map. For (a), (b), and (c), statistics are aggregated along the entire spatial dimension. (d) Ours, statistics are aggregated in a local region for each pixel.

Abstract

Global spatial statistics, which are aggregated along entire spatial dimensions, are widely used in top-performance image restorers. For example, mean, variance in Instance Normalization (IN) which is adopted by HINet, and global average pooling (ie, mean) in Squeeze and Excitation (SE) which is applied to MPRNet. This paper first shows that statistics aggregated on the patches-based/entire-image-based feature in the training/testing phase respectively may distribute very differently and lead to performance degradation in image restorers. It has been widely overlooked by previous works. To solve this issue, we propose a simple approach, Test-time Local Statistics Converter (TLSC), that replaces the region of statistics aggregation operation from global to local, only in the test time. Without retraining or finetuning, our approach significantly improves the image restorer's performance. In particular, by extending SE with TLSC to the state-of-the-art models, MPRNet boost by 0.65 dB in PSNR on GoPro dataset, achieves 33.31 dB, exceeds the previous best result 0.6 dB. In addition, we simply apply TLSC to the high-level vision task, ie, semantic segmentation, and achieves competitive results. Extensive quantity and quality experiments are conducted to demonstrate TLSC solves the issue with marginal costs while significant gain.

Usage

Installation

This implementation based on BasicSR which is a open source toolbox for image/video restoration tasks.

git clone https://github.com/megvii-research/tlsc.git
cd tlsc
pip install -r requirements.txt
python setup.py develop

Quick Start (Single Image Inference)

Main Results

Method GoPro GoPro HIDE HIDE REDS REDS
PSNR SSIM PSNR SSIM PSNR SSIM
HINet 32.71 0.959 30.33 0.932 28.83 0.863
HINet-local (ours) 33.08 0.962 30.66 0.936 28.96 0.865
MPRNet 32.66 0.959 30.96 0.939 - -
MPRNet-local (ours) 33.31 0.964 31.19 0.942 - -

Evaluation

Image Deblur - GoPro dataset (Click to expand)
  • prepare data

    • mkdir ./datasets/GoPro

    • download the test set in ./datasets/GoPro/test (refer to MPRNet)

    • it should be like:

      ./datasets/
      ./datasets/GoPro/test/
      ./datasets/GoPro/test/input/
      ./datasets/GoPro/test/target/
  • eval

    • download pretrained HINet to ./experiments/pretrained_models/HINet-GoPro.pth

    • python basicsr/test.py -opt options/test/HIDE/MPRNetLocal-HIDE.yml

    • download pretrained MPRNet to ./experiments/pretrained_models/MPRNet-GoPro.pth

    • python basicsr/test.py -opt options/test/HIDE/MPRNetLocal-HIDE.yml

Image Deblur - HIDE dataset (Click to expand)
  • prepare data

    • mkdir ./datasets/HIDE

    • download the test set in ./datasets/HIDE/test (refer to MPRNet)

    • it should be like:

      ./datasets/
      ./datasets/HIDE/test/
      ./datasets/HIDE/test/input/
      ./datasets/HIDE/test/target/
  • eval

    • download pretrained HINet to ./experiments/pretrained_models/HINet-GoPro.pth

    • python basicsr/test.py -opt options/test/GoPro/MPRNetLocal-GoPro.yml

    • download pretrained MPRNet to ./experiments/pretrained_models/MPRNet-GoPro.pth

    • python basicsr/test.py -opt options/test/GoPro/MPRNetLocal-GoPro.yml

Image Deblur - REDS dataset (Click to expand)
  • prepare data

    • mkdir ./datasets/REDS

    • download the val set from val_blur, val_sharp to ./datasets/REDS/ and unzip them.

    • it should be like

      ./datasets/
      ./datasets/REDS/
      ./datasets/REDS/val/
      ./datasets/REDS/val/val_blur_jpeg/
      ./datasets/REDS/val/val_sharp/
      
    • python scripts/data_preparation/reds.py

      • flatten the folders and extract 300 validation images.
  • eval

    • download pretrained HINet to ./experiments/pretrained_models/HINet-REDS.pth
    • python basicsr/test.py -opt options/test/REDS/HINetLocal-REDS.yml

Tricks: Change the 'fast_imp: false' (naive implementation) to 'fast_imp: true' (faster implementation) in MPRNetLocal config can achieve faster inference speed.

License

This project is under the MIT license, and it is based on BasicSR which is under the Apache 2.0 license.

Citations

If TLSC helps your research or work, please consider citing TLSC.

@article{chu2021tlsc,
  title={Revisiting Global Statistics Aggregation for Improving Image Restoration},
  author={Chu, Xiaojie and Chen, Liangyu and and Chen, Chengpeng and Lu, Xin},
  journal={arXiv preprint arXiv:2112.04491},
  year={2021}
}

Contact

If you have any questions, please contact [email protected] or [email protected].

Owner
MEGVII Research
Power Human with AI. 持续创新拓展认知边界 非凡科技成就产品价值
MEGVII Research
A Framework for Encrypted Machine Learning in TensorFlow

TF Encrypted is a framework for encrypted machine learning in TensorFlow. It looks and feels like TensorFlow, taking advantage of the ease-of-use of t

TF Encrypted 0 Jul 06, 2022
PyTorch implementation of NeurIPS 2021 paper: "CoFiNet: Reliable Coarse-to-fine Correspondences for Robust Point Cloud Registration"

CoFiNet: Reliable Coarse-to-fine Correspondences for Robust Point Cloud Registration (NeurIPS 2021) PyTorch implementation of the paper: CoFiNet: Reli

76 Jan 03, 2023
Finite-temperature variational Monte Carlo calculation of uniform electron gas using neural canonical transformation.

CoulombGas This code implements the neural canonical transformation approach to the thermodynamic properties of uniform electron gas. Building on JAX,

FermiFlow 9 Mar 03, 2022
[SDM 2022] Towards Similarity-Aware Time-Series Classification

SimTSC This is the PyTorch implementation of SDM2022 paper Towards Similarity-Aware Time-Series Classification. We propose Similarity-Aware Time-Serie

Daochen Zha 49 Dec 27, 2022
Python KNN model: Predicting a probability of getting a work visa. Tableau: Non-immigrant visas over the years.

The value of international students to the United States. Probability of getting a non-immigrant visa. Project timeline: Jan 2021 - April 2021 Project

Zinaida Dvoskina 2 Nov 21, 2021
Large-scale language modeling tutorials with PyTorch

Large-scale language modeling tutorials with PyTorch 안녕하세요. 저는 TUNiB에서 머신러닝 엔지니어로 근무 중인 고현웅입니다. 이 자료는 대규모 언어모델 개발에 필요한 여러가지 기술들을 소개드리기 위해 마련하였으며 기본적으로

TUNiB 172 Dec 29, 2022
CDTrans: Cross-domain Transformer for Unsupervised Domain Adaptation

CDTrans: Cross-domain Transformer for Unsupervised Domain Adaptation [arxiv] This is the official repository for CDTrans: Cross-domain Transformer for

238 Dec 22, 2022
Collapse by Conditioning: Training Class-conditional GANs with Limited Data

Collapse by Conditioning: Training Class-conditional GANs with Limited Data Moha

Mohamad Shahbazi 33 Dec 06, 2022
FcaNet: Frequency Channel Attention Networks

FcaNet: Frequency Channel Attention Networks PyTorch implementation of the paper "FcaNet: Frequency Channel Attention Networks". Simplest usage Models

327 Dec 27, 2022
Pytorch Implementation of Continual Learning With Filter Atom Swapping (ICLR'22 Spolight) Paper

Continual Learning With Filter Atom Swapping Pytorch Implementation of Continual Learning With Filter Atom Swapping (ICLR'22 Spolight) Paper If find t

11 Aug 29, 2022
Hypercomplex Neural Networks with PyTorch

HyperNets Hypercomplex Neural Networks with PyTorch: this repository would be a container for hypercomplex neural network modules to facilitate resear

Eleonora Grassucci 21 Dec 27, 2022
Reference implementation for Deep Unsupervised Learning using Nonequilibrium Thermodynamics

Diffusion Probabilistic Models This repository provides a reference implementation of the method described in the paper: Deep Unsupervised Learning us

Jascha Sohl-Dickstein 238 Jan 02, 2023
Nicely is a real-time Feedback and Intervention Program Depression is a prevalent issue across all age groups, socioeconomic classes, and cultural identities.

Nicely is a real-time Feedback and Intervention Program Depression is a prevalent issue across all age groups, socioeconomic classes, and cultural identities.

1 Jan 16, 2022
git《Beta R-CNN: Looking into Pedestrian Detection from Another Perspective》(NeurIPS 2020) GitHub:[fig3]

Beta R-CNN: Looking into Pedestrian Detection from Another Perspective This is the pytorch implementation of our paper "[Beta R-CNN: Looking into Pede

35 Sep 08, 2021
Machine learning notebooks in different subjects optimized to run in google collaboratory

Notebooks Name Description Category Link Training pix2pix This notebook shows a simple pipeline for training pix2pix on a simple dataset. Most of the

Zaid Alyafeai 363 Dec 06, 2022
Code base for reproducing results of I.Schubert, D.Driess, O.Oguz, and M.Toussaint: Learning to Execute: Efficient Learning of Universal Plan-Conditioned Policies in Robotics. NeurIPS (2021)

Learning to Execute (L2E) Official code base for completely reproducing all results reported in I.Schubert, D.Driess, O.Oguz, and M.Toussaint: Learnin

3 May 18, 2022
The code release of paper Low-Light Image Enhancement with Normalizing Flow

[AAAI 2022] Low-Light Image Enhancement with Normalizing Flow Paper | Project Page Low-Light Image Enhancement with Normalizing Flow Yufei Wang, Renji

Yufei Wang 176 Jan 06, 2023
Video Contrastive Learning with Global Context

Video Contrastive Learning with Global Context (VCLR) This is the official PyTorch implementation of our VCLR paper. Install dependencies environments

143 Dec 26, 2022
rliable is an open-source Python library for reliable evaluation, even with a handful of runs, on reinforcement learning and machine learnings benchmarks.

Open-source library for reliable evaluation on reinforcement learning and machine learning benchmarks. See NeurIPS 2021 oral for details.

Google Research 529 Jan 01, 2023
Knowledgeable Prompt-tuning: Incorporating Knowledge into Prompt Verbalizer for Text Classification

Knowledgeable Prompt-tuning: Incorporating Knowledge into Prompt Verbalizer for Text Classification

DingDing 143 Jan 01, 2023