A modification of Daniel Russell's notebook merged with Katherine Crowson's hq-skip-net changes

Overview

Cover

Edits made to this repo by Katherine Crowson

I have added several features to this repository for use in creating higher quality generative art (feature visualization probably also benefits):

  • Deformable convolutions have been added.

  • Higher quality non-learnable upsampling filters (bicubic, Lanczos) have been added, with matching downsampling filters. A bilinear downsampling filter which low pass filters properly has also been added.

  • The nets can now optionally output to a fixed decorrelated color space which is then transformed to RGB and sigmoided. Deep Image Prior as originally written does not know anything about the correlations between RGB color channels in natural images, which can be disadvantageous when using it for feature visualization and generative art.

Example:

from models import get_hq_skip_net

net = get_hq_skip_net(input_depth).to(device)

get_hq_skip_net() provides higher quality defaults for the skip net, using the added features, than get_net(). Deformable convolutions can be slow and if this is a problem you can disable them with offset_groups=0 or offset_type='none'. The decorrelated color space can be turned off with decorr_rgb=False. The upsample_mode and downsample_mode defaults are now 'cubic' for visual quality, I would recommend not going below 'linear'. The default channel count and number of scales has been increased.

The default configuration is to use 1x1 convolution layers to create the offsets for the deformable convolutions, because training can become unstable with 3x3. However to make full use of deformable convolutions you may want to use 3x3 offset layers and set their learning rate to around 1/10 of the normal layers:

net = get_hq_skip_net(input_depth, offset_type='full')
params = [{'params': get_non_offset_params(net), 'lr': lr},
          {'params': get_offset_params(net), 'lr': lr / 10}]
opt = optim.Adam(params)

This is a merge of Daniel Russell's deep-image-prior notebook with Katherine Crowson's notebook

Some minor additions: P. Fishwick 01/28/2022

Merged Katherine Crowson's deep_image_prior into Daniel Russell's original notebook : https://github.com/crowsonkb/deep-image-prior
Mount Google Drive to save the directory deep_image_prior
Updated to CLIP model RN50x64 with size 448
Lowered cutn to 10 for a V100 (16GB memory) - update for an A100
Iterates over num_images to create an image batch
Saves the image at each display interval

Original README

Warning! The optimization may not converge on some GPUs. We've personally experienced issues on Tesla V100 and P40 GPUs. When running the code, make sure you get similar results to the paper first. Easiest to check using text inpainting notebook. Try to set double precision mode or turn off cudnn.

Deep image prior

In this repository we provide Jupyter Notebooks to reproduce each figure from the paper:

Deep Image Prior

CVPR 2018

Dmitry Ulyanov, Andrea Vedaldi, Victor Lempitsky

[paper] [supmat] [project page]

Here we provide hyperparameters and architectures, that were used to generate the figures. Most of them are far from optimal. Do not hesitate to change them and see the effect.

We will expand this README with a list of hyperparameters and options shortly.

Install

Here is the list of libraries you need to install to execute the code:

  • python = 3.6
  • pytorch = 0.4
  • numpy
  • scipy
  • matplotlib
  • scikit-image
  • jupyter

All of them can be installed via conda (anaconda), e.g.

conda install jupyter

or create an conda env with all dependencies via environment file

conda env create -f environment.yml

Docker image

Alternatively, you can use a Docker image that exposes a Jupyter Notebook with all required dependencies. To build this image ensure you have both docker and nvidia-docker installed, then run

nvidia-docker build -t deep-image-prior .

After the build you can start the container as

nvidia-docker run --rm -it --ipc=host -p 8888:8888 deep-image-prior

you will be provided an URL through which you can connect to the Jupyter notebook.

Google Colab

To run it using Google Colab, click here and select the notebook to run. Remember to uncomment the first cell to clone the repository into colab's environment.

Citation

@article{UlyanovVL17,
    author    = {Ulyanov, Dmitry and Vedaldi, Andrea and Lempitsky, Victor},
    title     = {Deep Image Prior},
    journal   = {arXiv:1711.10925},
    year      = {2017}
}
Owner
Paul Fishwick
Distinguished Univ. Chair of Arts, Technology, and Emerging Communication & Professor of Computer Science
Paul Fishwick
Distributed Evolutionary Algorithms in Python

DEAP DEAP is a novel evolutionary computation framework for rapid prototyping and testing of ideas. It seeks to make algorithms explicit and data stru

Distributed Evolutionary Algorithms in Python 4.9k Jan 05, 2023
Hard cater examples from Hopper ICLR paper

CATER-h Honglu Zhou*, Asim Kadav, Farley Lai, Alexandru Niculescu-Mizil, Martin Renqiang Min, Mubbasir Kapadia, Hans Peter Graf (*Contact: honglu.zhou

NECLA ML Group 6 May 11, 2021
Source code for "UniRE: A Unified Label Space for Entity Relation Extraction.", ACL2021.

UniRE Source code for "UniRE: A Unified Label Space for Entity Relation Extraction.", ACL2021. Requirements python: 3.7.6 pytorch: 1.8.1 transformers:

Wang Yijun 109 Nov 29, 2022
Official Code for "Constrained Mean Shift Using Distant Yet Related Neighbors for Representation Learning"

CMSF Official Code for "Constrained Mean Shift Using Distant Yet Related Neighbors for Representation Learning" Requirements Python = 3.7.6 PyTorch

4 Nov 25, 2022
🏖 Keras Implementation of Painting outside the box

Keras implementation of Image OutPainting This is an implementation of Painting Outside the Box: Image Outpainting paper from Standford University. So

Bendang 1.1k Dec 10, 2022
Code for Talking Face Generation by Adversarially Disentangled Audio-Visual Representation (AAAI 2019)

Talking Face Generation by Adversarially Disentangled Audio-Visual Representation (AAAI 2019) We propose Disentangled Audio-Visual System (DAVS) to ad

Hang_Zhou 750 Dec 23, 2022
A Fast Knowledge Distillation Framework for Visual Recognition

FKD: A Fast Knowledge Distillation Framework for Visual Recognition Official PyTorch implementation of paper A Fast Knowledge Distillation Framework f

Zhiqiang Shen 129 Dec 24, 2022
Synthetic structured data generators

Join us on What is Synthetic Data? Synthetic data is artificially generated data that is not collected from real world events. It replicates the stati

YData 850 Jan 07, 2023
Jupyter notebooks for the code samples of the book "Deep Learning with Python"

Jupyter notebooks for the code samples of the book "Deep Learning with Python"

François Chollet 16.2k Dec 30, 2022
FEDn is an open-source, modular and ML-framework agnostic framework for Federated Machine Learning

FEDn is an open-source, modular and ML-framework agnostic framework for Federated Machine Learning (FedML) developed and maintained by Scaleout Systems. FEDn enables highly scalable cross-silo and cr

Scaleout 75 Nov 09, 2022
Sound-guided Semantic Image Manipulation - Official Pytorch Code (CVPR 2022)

🔉 Sound-guided Semantic Image Manipulation (CVPR2022) Official Pytorch Implementation Sound-guided Semantic Image Manipulation IEEE/CVF Conference on

CVLAB 58 Dec 28, 2022
RetinaFace: Deep Face Detection Library in TensorFlow for Python

RetinaFace is a deep learning based cutting-edge facial detector for Python coming with facial landmarks.

Sefik Ilkin Serengil 512 Dec 29, 2022
Submission to Twitter's algorithmic bias bounty challenge

Twitter Ethics Challenge: Pixel Perfect Submission to Twitter's algorithmic bias bounty challenge, by Travis Hoppe (@metasemantic). Abstract We build

Travis Hoppe 4 Aug 19, 2022
Code for LIGA-Stereo Detector, ICCV'21

LIGA-Stereo Introduction This is the official implementation of the paper LIGA-Stereo: Learning LiDAR Geometry Aware Representations for Stereo-based

Xiaoyang Guo 75 Dec 09, 2022
AdaDM: Enabling Normalization for Image Super-Resolution

AdaDM AdaDM: Enabling Normalization for Image Super-Resolution. You can apply BN, LN or GN in SR networks with our AdaDM. Pretrained models (EDSR*/RDN

58 Jan 08, 2023
Deep Text Search is an AI-powered multilingual text search and recommendation engine with state-of-the-art transformer-based multilingual text embedding (50+ languages).

Deep Text Search - AI Based Text Search & Recommendation System Deep Text Search is an AI-powered multilingual text search and recommendation engine w

19 Sep 29, 2022
A PyTorch implementation of "ANEMONE: Graph Anomaly Detection with Multi-Scale Contrastive Learning", CIKM-21

ANEMONE A PyTorch implementation of "ANEMONE: Graph Anomaly Detection with Multi-Scale Contrastive Learning", CIKM-21 Dependencies python==3.6.1 dgl==

Graph Analysis & Deep Learning Laboratory, GRAND 30 Dec 14, 2022
A collection of implementations of deep domain adaptation algorithms

Deep Transfer Learning on PyTorch This is a PyTorch library for deep transfer learning. We divide the code into two aspects: Single-source Unsupervise

Yongchun Zhu 647 Jan 03, 2023
A higher performance pytorch implementation of DeepLab V3 Plus(DeepLab v3+)

A Higher Performance Pytorch Implementation of DeepLab V3 Plus Introduction This repo is an (re-)implementation of Encoder-Decoder with Atrous Separab

linhua 326 Nov 22, 2022
A Comprehensive Analysis of Weakly-Supervised Semantic Segmentation in Different Image Domains (IJCV submission)

wsss-analysis The code of: A Comprehensive Analysis of Weakly-Supervised Semantic Segmentation in Different Image Domains, arXiv pre-print 2019 paper.

Lyndon Chan 48 Dec 18, 2022