A modification of Daniel Russell's notebook merged with Katherine Crowson's hq-skip-net changes

Overview

Cover

Edits made to this repo by Katherine Crowson

I have added several features to this repository for use in creating higher quality generative art (feature visualization probably also benefits):

  • Deformable convolutions have been added.

  • Higher quality non-learnable upsampling filters (bicubic, Lanczos) have been added, with matching downsampling filters. A bilinear downsampling filter which low pass filters properly has also been added.

  • The nets can now optionally output to a fixed decorrelated color space which is then transformed to RGB and sigmoided. Deep Image Prior as originally written does not know anything about the correlations between RGB color channels in natural images, which can be disadvantageous when using it for feature visualization and generative art.

Example:

from models import get_hq_skip_net

net = get_hq_skip_net(input_depth).to(device)

get_hq_skip_net() provides higher quality defaults for the skip net, using the added features, than get_net(). Deformable convolutions can be slow and if this is a problem you can disable them with offset_groups=0 or offset_type='none'. The decorrelated color space can be turned off with decorr_rgb=False. The upsample_mode and downsample_mode defaults are now 'cubic' for visual quality, I would recommend not going below 'linear'. The default channel count and number of scales has been increased.

The default configuration is to use 1x1 convolution layers to create the offsets for the deformable convolutions, because training can become unstable with 3x3. However to make full use of deformable convolutions you may want to use 3x3 offset layers and set their learning rate to around 1/10 of the normal layers:

net = get_hq_skip_net(input_depth, offset_type='full')
params = [{'params': get_non_offset_params(net), 'lr': lr},
          {'params': get_offset_params(net), 'lr': lr / 10}]
opt = optim.Adam(params)

This is a merge of Daniel Russell's deep-image-prior notebook with Katherine Crowson's notebook

Some minor additions: P. Fishwick 01/28/2022

Merged Katherine Crowson's deep_image_prior into Daniel Russell's original notebook : https://github.com/crowsonkb/deep-image-prior
Mount Google Drive to save the directory deep_image_prior
Updated to CLIP model RN50x64 with size 448
Lowered cutn to 10 for a V100 (16GB memory) - update for an A100
Iterates over num_images to create an image batch
Saves the image at each display interval

Original README

Warning! The optimization may not converge on some GPUs. We've personally experienced issues on Tesla V100 and P40 GPUs. When running the code, make sure you get similar results to the paper first. Easiest to check using text inpainting notebook. Try to set double precision mode or turn off cudnn.

Deep image prior

In this repository we provide Jupyter Notebooks to reproduce each figure from the paper:

Deep Image Prior

CVPR 2018

Dmitry Ulyanov, Andrea Vedaldi, Victor Lempitsky

[paper] [supmat] [project page]

Here we provide hyperparameters and architectures, that were used to generate the figures. Most of them are far from optimal. Do not hesitate to change them and see the effect.

We will expand this README with a list of hyperparameters and options shortly.

Install

Here is the list of libraries you need to install to execute the code:

  • python = 3.6
  • pytorch = 0.4
  • numpy
  • scipy
  • matplotlib
  • scikit-image
  • jupyter

All of them can be installed via conda (anaconda), e.g.

conda install jupyter

or create an conda env with all dependencies via environment file

conda env create -f environment.yml

Docker image

Alternatively, you can use a Docker image that exposes a Jupyter Notebook with all required dependencies. To build this image ensure you have both docker and nvidia-docker installed, then run

nvidia-docker build -t deep-image-prior .

After the build you can start the container as

nvidia-docker run --rm -it --ipc=host -p 8888:8888 deep-image-prior

you will be provided an URL through which you can connect to the Jupyter notebook.

Google Colab

To run it using Google Colab, click here and select the notebook to run. Remember to uncomment the first cell to clone the repository into colab's environment.

Citation

@article{UlyanovVL17,
    author    = {Ulyanov, Dmitry and Vedaldi, Andrea and Lempitsky, Victor},
    title     = {Deep Image Prior},
    journal   = {arXiv:1711.10925},
    year      = {2017}
}
Owner
Paul Fishwick
Distinguished Univ. Chair of Arts, Technology, and Emerging Communication & Professor of Computer Science
Paul Fishwick
NLP made easy

GluonNLP: Your Choice of Deep Learning for NLP GluonNLP is a toolkit that helps you solve NLP problems. It provides easy-to-use tools that helps you l

Distributed (Deep) Machine Learning Community 2.5k Jan 04, 2023
Official implementation of the paper ``Unifying Nonlocal Blocks for Neural Networks'' (ICCV'21)

Spectral Nonlocal Block Overview Official implementation of the paper: Unifying Nonlocal Blocks for Neural Networks (ICCV'21) Spectral View of Nonloca

91 Dec 14, 2022
Official pytorch code for SSAT: A Symmetric Semantic-Aware Transformer Network for Makeup Transfer and Removal

SSAT: A Symmetric Semantic-Aware Transformer Network for Makeup Transfer and Removal This is the official pytorch code for SSAT: A Symmetric Semantic-

ForeverPupil 57 Dec 13, 2022
PySlowFast: video understanding codebase from FAIR for reproducing state-of-the-art video models.

PySlowFast PySlowFast is an open source video understanding codebase from FAIR that provides state-of-the-art video classification models with efficie

Meta Research 5.3k Jan 03, 2023
Repo 4 basic seminar §How to make human machine readable"

WORK IN PROGRESS... Notebooks from the Seminar: Human Machine Readable WS21/22 Introduction into programming Georg Trogemann, Christian Heck, Mattis

experimental-informatics 3 May 29, 2022
METS/ALTO OCR enhancing tool by the National Library of Luxembourg (BnL)

Nautilus-OCR The National Library of Luxembourg (BnL) started its first initiative in digitizing newspapers, with layout recognition and OCR on articl

National Library of Luxembourg 36 Dec 05, 2022
PyTorch code accompanying the paper "Landmark-Guided Subgoal Generation in Hierarchical Reinforcement Learning" (NeurIPS 2021).

HIGL This is a PyTorch implementation for our paper: Landmark-Guided Subgoal Generation in Hierarchical Reinforcement Learning (NeurIPS 2021). Our cod

Junsu Kim 20 Dec 14, 2022
Bayesian Inference Tools in Python

BayesPy Bayesian Inference Tools in Python Our goal is, given the discrete outcomes of events, estimate the distribution of categories. Using gradient

Max Sklar 99 Dec 14, 2022
Self-supervised learning on Graph Representation Learning (node-level task)

graph_SSL Self-supervised learning on Graph Representation Learning (node-level task) How to run the code To run GRACE, sh run_GRACE.sh To run GCA, sh

Namkyeong Lee 3 Dec 31, 2021
D2LV: A Data-Driven and Local-Verification Approach for Image Copy Detection

Facebook AI Image Similarity Challenge: Matching Track —— Team: imgFp This is the source code of our 3rd place solution to matching track of Image Sim

16 Dec 25, 2022
Self-Learned Video Rain Streak Removal: When Cyclic Consistency Meets Temporal Correspondence

In this paper, we address the problem of rain streaks removal in video by developing a self-learned rain streak removal method, which does not require any clean groundtruth images in the training pro

Yang Wenhan 44 Dec 06, 2022
Release of the ConditionalQA dataset

ConditionalQA Datasets accompanying the paper ConditionalQA: A Complex Reading Comprehension Dataset with Conditional Answers. Disclaimer This dataset

14 Oct 17, 2022
Code for binary and multiclass model change active learning, with spectral truncation implementation.

Model Change Active Learning Paper (To Appear) Python code for doing active learning in graph-based semi-supervised learning (GBSSL) paradigm. Impleme

Kevin Miller 1 Jul 24, 2022
This is our ARTS test set, an enriched test set to probe Aspect Robustness of ABSA.

This is the repository for our 2020 paper "Tasty Burgers, Soggy Fries: Probing Aspect Robustness in Aspect-Based Sentiment Analysis". Data We provide

35 Nov 16, 2022
Mining-the-Social-Web-3rd-Edition - The official online compendium for Mining the Social Web, 3rd Edition (O'Reilly, 2018)

Mining the Social Web, 3rd Edition The official code repository for Mining the Social Web, 3rd Edition (O'Reilly, 2019). The book is available from Am

Mikhail Klassen 838 Jan 01, 2023
Pytorch library for fast transformer implementations

Transformers are very successful models that achieve state of the art performance in many natural language tasks

Idiap Research Institute 1.3k Dec 30, 2022
Txt2Xml tool will help you convert from txt COCO format to VOC xml format in Object Detection Problem.

TXT 2 XML All codes assume running from root directory. Please update the sys path at the beginning of the codes before running. Over View Txt2Xml too

Nguyễn Trường Lâu 4 Nov 24, 2022
Source code for the Paper: CombOptNet: Fit the Right NP-Hard Problem by Learning Integer Programming Constraints}

CombOptNet: Fit the Right NP-Hard Problem by Learning Integer Programming Constraints Installation Run pipenv install (at your own risk with --skip-lo

Autonomous Learning Group 65 Dec 27, 2022
ICCV2021, Tokens-to-Token ViT: Training Vision Transformers from Scratch on ImageNet

Tokens-to-Token ViT: Training Vision Transformers from Scratch on ImageNet, ICCV 2021 Update: 2021/03/11: update our new results. Now our T2T-ViT-14 w

YITUTech 1k Dec 31, 2022
This package implements THOR: Transformer with Stochastic Experts.

THOR: Transformer with Stochastic Experts This PyTorch package implements Taming Sparsely Activated Transformer with Stochastic Experts. Installation

Microsoft 45 Nov 22, 2022