[EMNLP 2021] LM-Critic: Language Models for Unsupervised Grammatical Error Correction

Overview

LM-Critic: Language Models for Unsupervised Grammatical Error Correction

This repo provides the source code & data of our paper: LM-Critic: Language Models for Unsupervised Grammatical Error Correction (EMNLP 2021).

@InProceedings{yasunaga2021language,
  author =  {Michihiro Yasunaga and Jure Leskovec and Percy Liang},
  title =   {LM-Critic: Language Models for Unsupervised Grammatical Error Correction},
  year =    {2021},  
  booktitle = {Empirical Methods in Natural Language Processing (EMNLP)},  
}

Overview

We developed a new method to use a pretrained language model (e.g. GPT2) to predict if a sentence is grammatical, which we call LM-Critic. You can play with this LM-Critic as described in Section 1. below. The idea is to deem a sentence to be grammatical if the language model assigns it a higher probability than candidates in its local neighborhood.

We then use the LM-Critic to generate training data for grammatical error correction (GEC) from unlabeled raw text, using the BIFI algorithm. This allows us to train GEC models in an unsupervised way. See Section 2. below.

How LM-Critic works

LM-Critic for GEC: We use LM-Critic to learn GEC models

0. Dependencies

Run the following commands to create a conda environment (assuming CUDA10.1):

conda create -n lm-critic python=3.8
conda activate lm-critic
pip install torch==1.6.0 torchvision==0.7.0
pip install transformers==4.3.3 datasets==1.3.0 absl-py rouge-score
pip install nltk wandb editdistance spacy==3.0.5
python3 -m nltk.downloader punkt

To use the ERRANT scorer for GEC evaluation, create another conda environment separately, as follows:

conda create -n errant200 python=3.6
conda activate errant200
pip3 install errant==2.0.0
python3 -m spacy download en

1. Use LM-Critic

The LM-Critic is defined in critic/critic.py. To play with it, you can run:

CUDA_VISIBLE_DEVICES=0 python3 critic/critic.py

This will prompt you for a sentence input, and returns the judgment (Good: grammatical, Bad: ungrammatical) along with the probability score of the input sentence. For example,

Enter a sentence: I like apple.
Bad! Your sentence log(p) = -22.333
Neighbor sentence with highest log(p): I like apples. (= -19.570)

Enter a sentence: I like apples.
Good! Your sentence log(p) = -19.570

To run intrinsic evaluation of LM-Critic on a test suite, run:

CUDA_VISIBLE_DEVICES=0 python3 eval_critic/eval_critic.py

You can import the LM-Critic function (from critic.critic import gpt2_critic) for your own code as done in this script.

2. Train/run grammatical error correction models

Change the working directory to gec/. First, download all the data (GEC benchmarks and training data) by running ./download_data.sh.

Round 0

Here we train an initial fixer on synthetic GEC data. Run the commands in src/run-round0.sh.

  • This corresponds to the "Transformer" baseline in the paper Table 4.
  • The original synthetic data was dowloaded from here, and our processed data is available at data/round0__synthetic/synthetic_paired_data_9M.json

Round 1

Here we use the BIFI algorithm and unlabeled text data to train an improved fixer. Run the commands in src/run-round1.sh.

  • Specifically, we perform the following four steps: (a) apply the current fixer (from Round 0) to unlabeled sentences and keep outputs that LM-Critic judges as good; (b) train a breaker on the paired data generated in Step (a); (c) apply the trained breaker on unlabeled sentences and keep outputs that LM-Critic judges as bad; (d) train the fixer on the paired data generated so far (Step (a) + Step (c) + synthetic data from Round0).
  • This corresponds to the "+ BIFI" in the paper Table 4.
  • The original unlabeled text data was downloaded from Yahoo! Answer dataset and Wikipedia revision dataset (we take sentences pre revision). Our processed paired data used in Step (d) is available at data/round1__BIFI/BIFI_paired_data_9M.json

For evaluation, we use ERRANT and M^2Scorer. ERRANT is set up in the conda environment described above (errant200) and M^2Scorer is set up in the download script.

Owner
Michihiro Yasunaga
PhD Student in Computer Science
Michihiro Yasunaga
ASCEND Chinese-English code-switching dataset

ASCEND (A Spontaneous Chinese-English Dataset) introduces a high-quality resource of spontaneous multi-turn conversational dialogue Chinese-English code-switching corpus collected in Hong Kong.

CAiRE 11 Dec 09, 2022
Chinese named entity recognization (bert/roberta/macbert/bert_wwm with Keras)

Chinese named entity recognization (bert/roberta/macbert/bert_wwm with Keras)

2 Jul 05, 2022
Uncomplete archive of files from the European Nopsled Team

European Nopsled CTF Archive This is an archive of collected material from various Capture the Flag competitions that the European Nopsled team played

European Nopsled 4 Nov 24, 2021
Unsupervised text tokenizer focused on computational efficiency

YouTokenToMe YouTokenToMe is an unsupervised text tokenizer focused on computational efficiency. It currently implements fast Byte Pair Encoding (BPE)

VK.com 847 Dec 19, 2022
The Internet Archive Research Assistant - Daily search Internet Archive for new items matching your keywords

The Internet Archive Research Assistant - Daily search Internet Archive for new items matching your keywords

Kay Savetz 60 Dec 25, 2022
Machine translation models released by the Gourmet project

Gourmet Models Overview The Gourmet project has released several machine translation models to translate low-resource languages. This repository conta

Edinburgh NLP 5 Dec 08, 2021
A simple chatbot based on chatterbot that you can use for anything has basic features

Chatbotium A simple chatbot based on chatterbot that you can use for anything has basic features. I have some errors Read the paragraph below: Known b

Herman 1 Feb 16, 2022
Concept Modeling: Topic Modeling on Images and Text

Concept is a technique that leverages CLIP and BERTopic-based techniques to perform Concept Modeling on images.

Maarten Grootendorst 120 Dec 27, 2022
Multilingual word vectors in 78 languages

Aligning the fastText vectors of 78 languages Facebook recently open-sourced word vectors in 89 languages. However these vectors are monolingual; mean

Babylon Health 1.2k Dec 17, 2022
Trankit is a Light-Weight Transformer-based Python Toolkit for Multilingual Natural Language Processing

Trankit: A Light-Weight Transformer-based Python Toolkit for Multilingual Natural Language Processing Trankit is a light-weight Transformer-based Pyth

652 Jan 06, 2023
Python library for Serbian Natural language processing (NLP)

SrbAI - Python biblioteka za procesiranje srpskog jezika SrbAI je projekat prikupljanja algoritama i modela za procesiranje srpskog jezika u jedinstve

Serbian AI Society 3 Nov 22, 2022
基于百度的语音识别,用python实现,pyaudio+pyqt

Speech-recognition 基于百度的语音识别,python3.8(conda)+pyaudio+pyqt+baidu-aip 百度有面向python

J-L 1 Jan 03, 2022
NLP: SLU tagging

NLP: SLU tagging

北海若 3 Jan 14, 2022
A PyTorch implementation of the Transformer model in "Attention is All You Need".

Attention is all you need: A Pytorch Implementation This is a PyTorch implementation of the Transformer model in "Attention is All You Need" (Ashish V

Yu-Hsiang Huang 7.1k Jan 05, 2023
构建一个多源(公众号、RSS)、干净、个性化的阅读环境

2C 构建一个多源(公众号、RSS)、干净、个性化的阅读环境 作为一名微信公众号的重度用户,公众号一直被我设为汲取知识的地方。随着使用程度的增加,相信大家或多或少会有一个比较头疼的问题——广告问题。 假设你关注的公众号有十来个,若一个公众号两周接一次广告,理论上你会面临二十多次广告,实际上会更多,运

howie.hu 678 Dec 28, 2022
A simple Streamlit App to classify swahili news into different categories.

Swahili News Classifier Streamlit App A simple app to classify swahili news into different categories. Installation Install all streamlit requirements

Davis David 4 May 01, 2022
Korean Simple Contrastive Learning of Sentence Embeddings using SKT KoBERT and kakaobrain KorNLU dataset

KoSimCSE Korean Simple Contrastive Learning of Sentence Embeddings implementation using pytorch SimCSE Installation git clone https://github.com/BM-K/

34 Nov 24, 2022
Model for recasing and repunctuating ASR transcripts

Recasing and punctuation model based on Bert Benoit Favre 2021 This system converts a sequence of lowercase tokens without punctuation to a sequence o

Benoit Favre 88 Dec 29, 2022
This project converts your human voice input to its text transcript and to an automated voice too.

Human Voice to Automated Voice & Text Introduction: In this project, whenever you'll speak, it will turn your voice into a robot voice and furthermore

Hassan Shahzad 3 Oct 15, 2021
Codes for processing meeting summarization datasets AMI and ICSI.

Meeting Summarization Dataset Meeting plays an essential part in our daily life, which allows us to share information and collaborate with others. Wit

xcfeng 39 Dec 14, 2022