The 1st place solution of track2 (Vehicle Re-Identification) in the NVIDIA AI City Challenge at CVPR 2021 Workshop.

Overview

AICITY2021_Track2_DMT

The 1st place solution of track2 (Vehicle Re-Identification) in the NVIDIA AI City Challenge at CVPR 2021 Workshop.

Introduction

Detailed information of NVIDIA AI City Challenge 2021 can be found here.

The code is modified from AICITY2020_DMT_VehicleReID, TransReID and reid_strong baseline.

Get Started

  1. cd to folder where you want to download this repo

  2. Run git clone https://github.com/michuanhaohao/AICITY2021_Track2_DMT.git

  3. Install dependencies: pip install requirements.txt

    We use cuda 11.0/python 3.7/torch 1.6.0/torchvision 0.7.0 for training and testing.

  4. Prepare Datasets Download Original dataset, Cropped_dataset, and SPGAN_dataset.

├── AIC21/
│   ├── AIC21_Track2_ReID/
│   	├── image_train/
│   	├── image_test/
│   	├── image_query/
│   	├── train_label.xml
│   	├── ...
│   	├── training_part_seg/
│   	    ├── cropped_patch/
│   	├── cropped_aic_test
│   	    ├── image_test/
│   	    ├── image_query/		
│   ├── AIC21_Track2_ReID_Simulation/
│   	├── sys_image_train/
│   	├── sys_image_train_tr/
  1. Put pre-trained models into ./pretrained/
    • resnet101_ibn_a-59ea0ac6.pth, densenet169_ibn_a-9f32c161.pth, resnext101_ibn_a-6ace051d.pth and se_resnet101_ibn_a-fabed4e2.pth can be downloaded from IBN-Net
    • resnest101-22405ba7.pth can be downloaded from ResNest
    • jx_vit_base_p16_224-80ecf9dd.pth can be downloaded from here

Trainint and Test

We utilize 1 GPU (32GB) for training. You can train and test one backbone as follow.

# ResNext101-IBN-a
python train.py --config_file configs/stage1/resnext101a_384.yml MODEL.DEVICE_ID "('0')"
python train_stage2_v1.py --config_file configs/stage2/resnext101a_384.yml MODEL.DEVICE_ID "('0')" OUTPUT_DIR './logs/stage2/resnext101a_384/v1'
python train_stage2_v2.py --config_file configs/stage2/resnext101a_384.yml MODEL.DEVICE_ID "('0')" OUTPUT_DIR './logs/stage2/resnext101a_384/v2'

python test.py --config_file configs/stage2/101a_384.yml MODEL.DEVICE_ID "('0')" TEST.WEIGHT './logs/stage2/resnext101a_384/v1/resnext101_ibn_a_2.pth' OUTPUT_DIR './logs/stage2/resnext101a_384/v1'
python test.py --config_file configs/stage2/101a_384.yml MODEL.DEVICE_ID "('0')" TEST.WEIGHT './logs/stage2/resnext101a_384/v2/resnext101_ibn_a_2.pth' OUTPUT_DIR './logs/stage2/resnext101a_384/v2'

You should train camera and viewpoint models before the inference stage. You also can directly use our trained results (track_cam_rk.npy and track_view_rk.npy):

python train_cam.py --config_file configs/camera_view/camera_101a.yml
python train_view.py --config_file configs/camera_view/view_101a.yml

You can train all eight backbones by checking run.sh. Then, you can ensemble all results:

python ensemble.py

All trained models can be downloaded from here

Leaderboard

TeamName mAP Link
DMT(Ours) 0.7445 code
NewGeneration 0.7151 code
CyberHu 0.6550 code

Citation

If you find our work useful in your research, please consider citing:

@inproceedings{luo2021empirical,
 title={An Empirical Study of Vehicle Re-Identification on the AI City Challenge},
 author={Luo, Hao and Chen, Weihua and Xu Xianzhe and Gu Jianyang and Zhang, Yuqi and Chong Liu and Jiang Qiyi and He, Shuting and Wang, Fan and Li, Hao},
 booktitle={Proc. CVPR Workshops},
 year={2021}
}
Owner
Hao Luo
Ph.D., Alibaba DAMO Academy&Zhejiang University
Hao Luo
Preprossing-loan-data-with-NumPy - In this project, I have cleaned and pre-processed the loan data that belongs to an affiliate bank based in the United States.

Preprossing-loan-data-with-NumPy In this project, I have cleaned and pre-processed the loan data that belongs to an affiliate bank based in the United

Dhawal Chitnavis 2 Jan 03, 2022
Proposal, Tracking and Segmentation (PTS): A Cascaded Network for Video Object Segmentation

Proposal, Tracking and Segmentation (PTS): A Cascaded Network for Video Object Segmentation By Qiang Zhou*, Zilong Huang*, Lichao Huang, Han Shen, Yon

Forest 117 Apr 01, 2022
AugMix: A Simple Data Processing Method to Improve Robustness and Uncertainty

AugMix Introduction We propose AugMix, a data processing technique that mixes augmented images and enforces consistent embeddings of the augmented ima

Google Research 876 Dec 17, 2022
Spearmint Bayesian optimization codebase

Spearmint Spearmint is a software package to perform Bayesian optimization. The Software is designed to automatically run experiments (thus the code n

Formerly: Harvard Intelligent Probabilistic Systems Group -- Now at Princeton 1.5k Dec 29, 2022
MAUS: A Dataset for Mental Workload Assessment Using Wearable Sensor - Baseline system

MAUS: A Dataset for Mental Workload Assessment Using Wearable Sensor - Baseline system Getting started To start working on this assignment, you should

2 Aug 06, 2022
Transfer Learning library for Deep Neural Networks.

Transfer and meta-learning in Python Each folder in this repository corresponds to a method or tool for transfer/meta-learning. xfer-ml is a standalon

Amazon 245 Dec 08, 2022
ImageNet-CoG is a benchmark for concept generalization. It provides a full evaluation framework for pre-trained visual representations which measure how well they generalize to unseen concepts.

The ImageNet-CoG Benchmark Project Website Paper (arXiv) Code repository for the ImageNet-CoG Benchmark introduced in the paper "Concept Generalizatio

NAVER 23 Oct 09, 2022
[CVPR 2016] Unsupervised Feature Learning by Image Inpainting using GANs

Context Encoders: Feature Learning by Inpainting CVPR 2016 [Project Website] [Imagenet Results] Sample results on held-out images: This is the trainin

Deepak Pathak 829 Dec 31, 2022
This is the official code of L2G, Unrolling and Recurrent Unrolling in Learning to Learn Graph Topologies.

Learning to Learn Graph Topologies This is the official code of L2G, Unrolling and Recurrent Unrolling in Learning to Learn Graph Topologies. Requirem

Stacy X PU 16 Dec 09, 2022
Jremesh-tools - Blender addon for quad remeshing

JRemesh Tools Blender 2.8 - 3.x addon for quad remeshing. Currently it is a wrap

Jayanam 89 Dec 30, 2022
Official PyTorch implementation of BlobGAN: Spatially Disentangled Scene Representations

BlobGAN: Spatially Disentangled Scene Representations Official PyTorch Implementation Paper | Project Page | Video | Interactive Demo BlobGAN.mp4 This

148 Dec 29, 2022
face_recognization (FaceNet) + TFHE (HNP) + hand_face_detection (Mediapipe)

SuperControlSystem Face_Recognization (FaceNet) 面部识别 (FaceNet) Fully Homomorphic Encryption over the Torus (HNP) 环面全同态加密 (TFHE) Hand_Face_Detection (M

liziyu0104 2 Dec 30, 2021
MultiTaskLearning - Multi Task Learning for 3D segmentation

Multi Task Learning for 3D segmentation Perception stack of an Autonomous Drivin

2 Sep 22, 2022
A ssl analyzer which could analyzer target domain's certificate.

ssl_analyzer A ssl analyzer which could analyzer target domain's certificate. Analyze the domain name ssl certificate information according to the inp

vincent 17 Dec 12, 2022
PyTorch implementation of the supervised learning experiments from the paper Model-Agnostic Meta-Learning (MAML)

pytorch-maml This is a PyTorch implementation of the supervised learning experiments from the paper Model-Agnostic Meta-Learning (MAML): https://arxiv

Kate Rakelly 516 Jan 05, 2023
Vehicle speed detection with python

Vehicle-speed-detection In the project simulate the tracker.py first then simulate the SpeedDetector.py. Finally, a new window pops up and the output

3 Dec 15, 2022
Orthogonal Jacobian Regularization for Unsupervised Disentanglement in Image Generation (ICCV 2021)

Orthogonal Jacobian Regularization for Unsupervised Disentanglement in Image Generation Home | PyTorch BigGAN Discovery | TensorFlow ProGAN Regulariza

Yuxiang Wei 54 Dec 30, 2022
A modern pure-Python library for reading PDF files

pdf A modern pure-Python library for reading PDF files. The goal is to have a modern interface to handle PDF files which is consistent with itself and

6 Apr 06, 2022
Open source repository for the code accompanying the paper 'Non-Rigid Neural Radiance Fields Reconstruction and Novel View Synthesis of a Deforming Scene from Monocular Video'.

Non-Rigid Neural Radiance Fields This is the official repository for the project "Non-Rigid Neural Radiance Fields: Reconstruction and Novel View Synt

Facebook Research 296 Dec 29, 2022
Python scripts form performing stereo depth estimation using the HITNET model in ONNX.

ONNX-HITNET-Stereo-Depth-estimation Python scripts form performing stereo depth estimation using the HITNET model in ONNX. Stereo depth estimation on

Ibai Gorordo 30 Nov 08, 2022