This repository contains code to run experiments in the paper "Signal Strength and Noise Drive Feature Preference in CNN Image Classifiers."

Overview

Signal Strength and Noise Drive Feature Preference in CNN Image Classifiers

This repository contains code to run experiments in the paper "Signal Strength and Noise Drive Feature Preference in CNN Image Classifiers." There are three subdirectories in this repository, the contents of which are described below. This code was tested using PyTorch 1.7.

Synthetic Pairs Matrix

This part of the repository is for running the synthetic pairs matrix experiments in the paper. Here are the commands to run all of the experiments in the paper:

Pairs Matrix 1

python main.py --exp_name pairs_matrix1 --pattern_dir pairs_matrix1 --imgnet_augment

Pairs Matrix 2

python main.py --exp_name pairs_matrix2 --pattern_dir pairs_matrix2 --imgnet_augment

Color Deviation

python main.py --exp_name color_deviation_(your epsilon here) --pattern_dir pairs_matrix1 --hue_perturb blue_circle --hue_perturb_val (your epsilon here) --imgnet_augment

Color Overlap (pattern dirs are already predefined for these. Some overlap values are included, but if you would like to use different ones, you must create them yourself.)

python main.py --exp_name color_overlap_(your overlap here) --pattern_dir color_overlap_(your overlap here) --imgnet_augment

Predictivity

python3 main.py --exp_name predictivity_(your predictivity here) --pattern_dir pairs_matrix1 --pred_drop blue --pred_drop_val (your predictivity here)

When you run one of these experiments, datasets will be created and models trained. Datasets will get created and stored in the directory ./data/exp_name, trained models will get stored in ./models/exp_name, and results will appear in ./results/exp_name. When the experiment is done, there should be a file called master.csv in the directory ./results/exp_name which will contain information including each feature's average preference over the course of the experiment, pixel count, and name. A complete list of commands to generate all data in the paper can be found in the commands.sh file in the pairs_matrix_experiments subdirectory. The training script is adapted from the torchvision training script: https://github.com/pytorch/examples/blob/master/imagenet/main.py.

Texture Bias

Stimuli and helper code is used from the open-sourced code of the paper "ImageNet-trained CNNs are biased towards texture; increasing shape bias improves accuracy and robustness" (https://github.com/rgeirhos/texture-vs-shape).

To run the experiments from our paper with an ImageNet-trained ResNet-50, you can do the following:

Normal Texture Bias

python main.py

Varying degrees of background interpolation to white (use 0 for completely white, 1 for texture background).

python main.py --bg_interp (your interpolation here)

Resizing

python main.py --bg_interp 0 --size (your fraction of the object size here)

Landscapes

python main.py --bg_interp 0 --landscape

Only full shapes

python main.py --only_complete

Only full shapes masked with masked/interpolated background

python main.py --only_complete --bg_interp (your interpolation here)

A complete list of commands to generate all of the texture bias data from our paper can be found in the commands.sh file in the texture_bias subdirectory.

Excessive Invariance

Running these experiments is a bit more involved. A complete list of commands you must run to reproduce all data and graphs found in the paper can be found in the commands.sh file in the excessive_invariance subdirectory. Comments in the file describe what each step represents.

Keras udrl - Keras implementation of Upside Down Reinforcement Learning

keras_udrl Keras implementation of Upside Down Reinforcement Learning This is me

Eder Santana 7 Jan 24, 2022
Face Mask Detection System built with OpenCV, TensorFlow using Computer Vision concepts

Face mask detection Face Mask Detection System built with OpenCV, TensorFlow using Computer Vision concepts in order to detect face masks in static im

Vaibhav Shukla 1 Oct 27, 2021
Localized representation learning from Vision and Text (LoVT)

Localized Vision-Text Pre-Training Contrastive learning has proven effective for pre- training image models on unlabeled data and achieved great resul

Philip Müller 10 Dec 07, 2022
Official Pytorch implementation of the paper "Action-Conditioned 3D Human Motion Synthesis with Transformer VAE", ICCV 2021

ACTOR Official Pytorch implementation of the paper "Action-Conditioned 3D Human Motion Synthesis with Transformer VAE", ICCV 2021. Please visit our we

Mathis Petrovich 248 Dec 23, 2022
🔥🔥High-Performance Face Recognition Library on PaddlePaddle & PyTorch🔥🔥

face.evoLVe: High-Performance Face Recognition Library based on PaddlePaddle & PyTorch Evolve to be more comprehensive, effective and efficient for fa

Zhao Jian 3.1k Jan 04, 2023
General Virtual Sketching Framework for Vector Line Art (SIGGRAPH 2021)

General Virtual Sketching Framework for Vector Line Art - SIGGRAPH 2021 Paper | Project Page Outline Dependencies Testing with Trained Weights Trainin

Haoran MO 118 Dec 27, 2022
Dataloader tools for language modelling

Installation: pip install lm_dataloader Design Philosophy A library to unify lm dataloading at large scale Simple interface, any tokenizer can be inte

5 Mar 25, 2022
Relative Positional Encoding for Transformers with Linear Complexity

Stochastic Positional Encoding (SPE) This is the source code repository for the ICML 2021 paper Relative Positional Encoding for Transformers with Lin

Antoine Liutkus 48 Nov 16, 2022
Code for the paper "Relation of the Relations: A New Formalization of the Relation Extraction Problem"

This repo contains the code for the EMNLP 2020 paper "Relation of the Relations: A New Paradigm of the Relation Extraction Problem" (Jin et al., 2020)

YYY 27 Oct 26, 2022
Pytorch implementation of COIN, a framework for compression with implicit neural representations 🌸

COIN 🌟 This repo contains a Pytorch implementation of COIN: COmpression with Implicit Neural representations, including code to reproduce all experim

Emilien Dupont 104 Dec 14, 2022
PyTorch implementation of Federated Learning with Non-IID Data, and federated learning algorithms, including FedAvg, FedProx.

Federated Learning with Non-IID Data This is an implementation of the following paper: Yue Zhao, Meng Li, Liangzhen Lai, Naveen Suda, Damon Civin, Vik

Youngjoon Lee 48 Dec 29, 2022
The code for our paper "NSP-BERT: A Prompt-based Zero-Shot Learner Through an Original Pre-training Task —— Next Sentence Prediction"

The code for our paper "NSP-BERT: A Prompt-based Zero-Shot Learner Through an Original Pre-training Task —— Next Sentence Prediction"

Sun Yi 201 Nov 21, 2022
A small fun project using python OpenCV, mediapipe, and pydirectinput

Here I tried a small fun project using python OpenCV, mediapipe, and pydirectinput. Here we can control moves car game when yellow color come to right box (press key 'd') left box (press key 'a') lef

Sameh Elisha 3 Nov 17, 2022
This repository contains the code and models necessary to replicate the results of paper: How to Robustify Black-Box ML Models? A Zeroth-Order Optimization Perspective

Black-Box-Defense This repository contains the code and models necessary to replicate the results of our recent paper: How to Robustify Black-Box ML M

OPTML Group 2 Oct 05, 2022
CS550 Machine Learning course project on CNN Detection.

CNN Detection (CS550 Machine Learning Project) Team Members (Tensor) : Yadava Kishore Chodipilli (11940310) Thashmitha BS (11941250) This is a work do

yaadava_kishore 2 Jan 30, 2022
Custom implementation of Corrleation Module

Pytorch Correlation module this is a custom C++/Cuda implementation of Correlation module, used e.g. in FlowNetC This tutorial was used as a basis for

Clément Pinard 361 Dec 12, 2022
POT : Python Optimal Transport

POT: Python Optimal Transport This open source Python library provide several solvers for optimization problems related to Optimal Transport for signa

Python Optimal Transport 1.7k Dec 31, 2022
Enhancing Aspect-Based Sentiment Analysis with Supervised Contrastive Learning.

Enhancing Aspect-Based Sentiment Analysis with Supervised Contrastive Learning. Enhancing Aspect-Based Sentiment Analysis with Supervised Contrastive

<a href=[email protected](SZ)"> 7 Dec 16, 2021
Proof of concept GnuCash Webinterface

Proof of Concept GnuCash Webinterface This may one day be a something truly great. Milestones [ ] Browse accounts and view transactions [ ] Record sim

Josh 14 Dec 28, 2022
Implementation of Kronecker Attention in Pytorch

Kronecker Attention Pytorch Implementation of Kronecker Attention in Pytorch. Results look less than stellar, but if someone found some context where

Phil Wang 16 May 06, 2022