A performant state estimator for power system

Overview

fastSE (power system state estimation)

PyPI pyversions PyPI version fury.io PyPI license

A performant state estimator for power system

sparse matrix + jit + klu + custom improved ordering + python = efficient in computation and development!

Installation

To install, simply run pip install fastSE in your command prompt.

How to use

Here is one simple example. solve_se_lm is a high-level function which computes derivatives, assemble them as sparse matrix and then calculate the estimates using sparse matrix solver. All the low-level functions could also be imported and used individually.

from fastse import solve_se_lm, bdd_validation, StateEstimationInput
from scipy.sparse import csr_matrix
import numpy as np

import time
# A 5 bus example from Prof. Overbye's textbook
# node impedance
Ybus = np.array([[3.729 - 49.720j, 0.000 + 0.000j, 0.000 + 0.000j,
        0.000 + 0.000j, -3.729 + 49.720j],
       [0.000 + 0.000j, 2.678 - 28.459j, 0.000 + 0.000j,
        -0.893 + 9.920j, -1.786 + 19.839j],
       [0.000 + 0.000j, 0.000 + 0.000j, 7.458 - 99.441j,
        -7.458 + 99.441j, 0.000 + 0.000j],
       [0.000 + 0.000j, -0.893 + 9.920j, -7.458 + 99.441j,
        11.922 - 147.959j, -3.571 + 39.679j],
       [-3.729 + 49.720j, -1.786 + 19.839j, 0.000 + 0.000j,
        -3.571 + 39.679j, 9.086 - 108.578j]])
Ybus = csr_matrix(Ybus)

# branch impedance
Yf = np.array([[ 3.729-49.720j,  0.000 +0.000j,  0.000 +0.000j,  0.000 +0.000j,
    -3.729+49.720j],
   [ 0.000 +0.000j, -0.893 +9.920j,  0.000 +0.000j,  0.893 -9.060j,
     0.000 +0.000j],
   [ 0.000 +0.000j, -1.786+19.839j,  0.000 +0.000j,  0.000 +0.000j,
     1.786-19.399j],
   [ 0.000 +0.000j,  0.000 +0.000j,  7.458-99.441j, -7.458+99.441j,
     0.000 +0.000j],
   [ 0.000 +0.000j,  0.000 +0.000j,  0.000 +0.000j, -3.571+39.679j,
     3.571-39.459j]])
Yf = csr_matrix(Yf)

Yt = np.array([[-3.729+49.720j,  0.000 +0.000j,  0.000 +0.000j,  0.000 +0.000j,
     3.729-49.720j],
   [ 0.000 +0.000j,  0.893 -9.060j,  0.000 +0.000j, -0.893 +9.920j,
     0.000 +0.000j],
   [ 0.000 +0.000j,  1.786-19.399j,  0.000 +0.000j,  0.000 +0.000j,
    -1.786+19.839j],
   [ 0.000 +0.000j,  0.000 +0.000j, -7.458+99.441j,  7.458-99.441j,
     0.000 +0.000j],
   [ 0.000 +0.000j,  0.000 +0.000j,  0.000 +0.000j,  3.571-39.459j,
    -3.571+39.679j]])
Yt = csr_matrix(Yt)

# branch from and to bus
f = np.array([0, 3, 4, 2, 4])
t = np.array([4, 1, 1, 3, 3])

# slack, pv and pq buses
slack = np.array([0])  # The slack bus does not have to be the 0-indexed bus
pq = np.array([1, 3, 4])
pv = np.array([2])

# measurements
se_input = StateEstimationInput()

se_input.p_inj = np.array([ 3.948e+00, -8.000e+00,  4.400e+00, -6.507e-06, -1.407e-05])
se_input.p_inj_idx = np.arange(len(se_input.p_inj))
se_input.p_inj_weight = np.full(len(se_input.p_inj), 0.01)

se_input.q_inj = np.array([ 1.143e+00, -2.800e+00,  2.975e+00,  6.242e-07,  1.957e-06])
se_input.q_inj_idx = np.arange(len(se_input.q_inj))
se_input.q_inj_weight = np.full(len(se_input.q_inj), 0.01)

se_input.vm_m = np.array([0.834, 1.019, 0.974])
se_input.vm_m_idx = pq
se_input.vm_m_weight = np.full(len(se_input.vm_m), 0.01)

# First time will be slow due to compilation
start = time.time()
v_sol, err, converged, results = solve_se_lm(Ybus, Yf, Yt, f, t, se_input, slack, pq, pv)
print("compilation + execution time:", time.time() - start)
bdd_validation(results, m=len(se_input.measurements), n=Ybus.shape[0] + len(pq) + len(pv))

# But then it will be very performant
start = time.time()
v_sol, err, converged, results = solve_se_lm(Ybus, Yf, Yt, f, t, se_input, slack, pq, pv)
print("Execution time:", time.time() - start)

# False data injection
se_input.vm_m[1] -= 0.025
se_input.vm_m[2] += 0.025
v_sol, err, converged, results = solve_se_lm(Ybus, Yf, Yt, f, t, se_input, slack, pq, pv)
print("-------------After False Data Injection-------------")
bdd_validation(results, m=len(se_input.measurements), n=Ybus.shape[0] + len(pq) + len(pv))

Acknowledge

This work was supported by the U.S. Department of Energy (DOE) under award DE-OE0000895 and the Sandia National Laboratories’ directed R&D project #222444.

Owner
Python/JavaScript/Rust
En este repositorio realizaré la tarea del laberinto.

Laberinto Perfil de GitHub del autor de este proyecto: @jmedina28 En este repositorio queda resuelta la composición de un laberinto 5x5 con sus muros

Juan Medina 1 Dec 11, 2021
Uma versão em Python/Ursina do aplicativo Real Drum (android).

Real Drum Descrição Esta é uma versão alternativa feita em Python com a engine Ursina do aplicatio Real Drum (presente no Google Play Store). Como exe

hayukimori 5 Aug 20, 2022
Quick script for automatically extracting syscall numbers for an OS

Syscalls-Extractor Quick script for automatically extracting syscall numbers for an OS $ python3 .\syscalls-extractor.py --help usage: syscalls-extrac

m0rv4i 54 Feb 10, 2022
A NetBox Plugin that gives a UI for generating, comparing and deploying configurations to devices.

netbox_config_plugin - A plugin to generate, compare and deploy configurations This plugin allows you to execute your code to generate a config for a

Jo 11 Dec 21, 2022
Credit Card Fraud Detection

Credit Card Fraud Detection For this project, I used the datasets from the kaggle competition called IEEE-CIS Fraud Detection. The competition aims to

RayWu 4 Jun 21, 2022
Grouping nucleotide coordinate ranges.

NuclRanger Grouping nucleotide coordinate ranges. A quick pre-processing step for "bedtools getfasta":- https://bedtools.readthedocs.io/en/latest/cont

Sujanavan Tiruvayipati 1 Oct 04, 2022
Simple, configuration-driven backup software for servers and workstations

title permalink borgmatic index.html It's your data. Keep it that way. borgmatic is simple, configuration-driven backup software for servers and works

borgmatic collective 1.3k Dec 30, 2022
Bootcamp de Introducción a la Programación. Módulo 6: Matemáticas Discretas

Módulo 6: Matemáticas Discretas Última actualización: 12 de marzo Irónicamente, las matemáticas discretas son las matemáticas que lo cuentan todo. Si

Cynthia Castillo 34 Sep 29, 2022
The best way to learn Python is by practicing examples. The repository contains examples of basic concepts of Python. You are advised to take the references from these examples and try them on your own.

90_Python_Exercises_and_Challenges The best way to learn Python is by practicing examples. This repository contains the examples on basic and advance

Milaan Parmar / Милан пармар / _米兰 帕尔马 205 Jan 06, 2023
CALPHAD tools for designing thermodynamic models, calculating phase diagrams and investigating phase equilibria.

CALPHAD tools for designing thermodynamic models, calculating phase diagrams and investigating phase equilibria.

pycalphad 189 Dec 13, 2022
Eros is an expiremental programming language built using simple Python code.

Eros is an expiremental programming language built using simple Python code. Featuring an easy syntax and unique features like type slicing, the language remains an expirement that grows in down time

zxro 2 Nov 21, 2021
Make pack up python files easier.

python-easy-pack make pack up python files easier. 目前只提供了中文环境 如何使用? 将index.py复制到你的项目文件夹,或者把.py文件拷贝到这个文件夹。 打开你的cmd或者powershell 切换到程序所在目录,输入python index

2 Dec 15, 2021
Find functions without canary check (or similar)

Ghidra Check Protector Which non-trivial functions don't reference the stack canary checker (or other, user-defined function)? Place your cursor to th

buherator 3 Jan 17, 2022
A Python script to parse Fortinet products serial numbers, and detect the associated model and version.

ParseFortinetSerialNumber A Python script to parse Fortinet products serial numbers, and detect the associated model and version. Example $ ./ParseFor

Podalirius 10 Oct 28, 2022
A bash-like intrepreted language

A Bash-like interpreted scripting language.

AshVXmc 1 Oct 28, 2021
A fishing bot script written in Python!

A fishing bot script written in Python!

Anel Drocic 3 Nov 03, 2021
Fully cross-platform toolkit (and library!) for MachO+Obj-C editing/analysis

fully cross-platform toolkit (and library!) for MachO+Obj-C editing/analysis. Includes a cli kit, a curses GUI, ObjC header dumping, and much more.

cynder 301 Dec 28, 2022
World Happiness Report is a publication of the Sustainable Development Solutions Network

World-Happiness-Report We are going to visualise what are the factors and which

Shubh Almal 1 Jan 03, 2023
Python data loader for Solar Orbiter's (SolO) Energetic Particle Detector (EPD).

Data loader (and downloader) for Solar Orbiter/EPD energetic charged particle sensors EPT, HET, and STEP. Supports level 2 and low latency data provided by ESA's Solar Orbiter Archive.

Jan Gieseler 9 Dec 16, 2022
A Dungeon and Dragons Toolkit using Python

Pythons-Dungeons A Dungeon and Dragons Toolkit using Python Rules: -When you are commiting please don't delete parts of the code that are important -A

2 Oct 21, 2021