A performant state estimator for power system

Overview

fastSE (power system state estimation)

PyPI pyversions PyPI version fury.io PyPI license

A performant state estimator for power system

sparse matrix + jit + klu + custom improved ordering + python = efficient in computation and development!

Installation

To install, simply run pip install fastSE in your command prompt.

How to use

Here is one simple example. solve_se_lm is a high-level function which computes derivatives, assemble them as sparse matrix and then calculate the estimates using sparse matrix solver. All the low-level functions could also be imported and used individually.

from fastse import solve_se_lm, bdd_validation, StateEstimationInput
from scipy.sparse import csr_matrix
import numpy as np

import time
# A 5 bus example from Prof. Overbye's textbook
# node impedance
Ybus = np.array([[3.729 - 49.720j, 0.000 + 0.000j, 0.000 + 0.000j,
        0.000 + 0.000j, -3.729 + 49.720j],
       [0.000 + 0.000j, 2.678 - 28.459j, 0.000 + 0.000j,
        -0.893 + 9.920j, -1.786 + 19.839j],
       [0.000 + 0.000j, 0.000 + 0.000j, 7.458 - 99.441j,
        -7.458 + 99.441j, 0.000 + 0.000j],
       [0.000 + 0.000j, -0.893 + 9.920j, -7.458 + 99.441j,
        11.922 - 147.959j, -3.571 + 39.679j],
       [-3.729 + 49.720j, -1.786 + 19.839j, 0.000 + 0.000j,
        -3.571 + 39.679j, 9.086 - 108.578j]])
Ybus = csr_matrix(Ybus)

# branch impedance
Yf = np.array([[ 3.729-49.720j,  0.000 +0.000j,  0.000 +0.000j,  0.000 +0.000j,
    -3.729+49.720j],
   [ 0.000 +0.000j, -0.893 +9.920j,  0.000 +0.000j,  0.893 -9.060j,
     0.000 +0.000j],
   [ 0.000 +0.000j, -1.786+19.839j,  0.000 +0.000j,  0.000 +0.000j,
     1.786-19.399j],
   [ 0.000 +0.000j,  0.000 +0.000j,  7.458-99.441j, -7.458+99.441j,
     0.000 +0.000j],
   [ 0.000 +0.000j,  0.000 +0.000j,  0.000 +0.000j, -3.571+39.679j,
     3.571-39.459j]])
Yf = csr_matrix(Yf)

Yt = np.array([[-3.729+49.720j,  0.000 +0.000j,  0.000 +0.000j,  0.000 +0.000j,
     3.729-49.720j],
   [ 0.000 +0.000j,  0.893 -9.060j,  0.000 +0.000j, -0.893 +9.920j,
     0.000 +0.000j],
   [ 0.000 +0.000j,  1.786-19.399j,  0.000 +0.000j,  0.000 +0.000j,
    -1.786+19.839j],
   [ 0.000 +0.000j,  0.000 +0.000j, -7.458+99.441j,  7.458-99.441j,
     0.000 +0.000j],
   [ 0.000 +0.000j,  0.000 +0.000j,  0.000 +0.000j,  3.571-39.459j,
    -3.571+39.679j]])
Yt = csr_matrix(Yt)

# branch from and to bus
f = np.array([0, 3, 4, 2, 4])
t = np.array([4, 1, 1, 3, 3])

# slack, pv and pq buses
slack = np.array([0])  # The slack bus does not have to be the 0-indexed bus
pq = np.array([1, 3, 4])
pv = np.array([2])

# measurements
se_input = StateEstimationInput()

se_input.p_inj = np.array([ 3.948e+00, -8.000e+00,  4.400e+00, -6.507e-06, -1.407e-05])
se_input.p_inj_idx = np.arange(len(se_input.p_inj))
se_input.p_inj_weight = np.full(len(se_input.p_inj), 0.01)

se_input.q_inj = np.array([ 1.143e+00, -2.800e+00,  2.975e+00,  6.242e-07,  1.957e-06])
se_input.q_inj_idx = np.arange(len(se_input.q_inj))
se_input.q_inj_weight = np.full(len(se_input.q_inj), 0.01)

se_input.vm_m = np.array([0.834, 1.019, 0.974])
se_input.vm_m_idx = pq
se_input.vm_m_weight = np.full(len(se_input.vm_m), 0.01)

# First time will be slow due to compilation
start = time.time()
v_sol, err, converged, results = solve_se_lm(Ybus, Yf, Yt, f, t, se_input, slack, pq, pv)
print("compilation + execution time:", time.time() - start)
bdd_validation(results, m=len(se_input.measurements), n=Ybus.shape[0] + len(pq) + len(pv))

# But then it will be very performant
start = time.time()
v_sol, err, converged, results = solve_se_lm(Ybus, Yf, Yt, f, t, se_input, slack, pq, pv)
print("Execution time:", time.time() - start)

# False data injection
se_input.vm_m[1] -= 0.025
se_input.vm_m[2] += 0.025
v_sol, err, converged, results = solve_se_lm(Ybus, Yf, Yt, f, t, se_input, slack, pq, pv)
print("-------------After False Data Injection-------------")
bdd_validation(results, m=len(se_input.measurements), n=Ybus.shape[0] + len(pq) + len(pv))

Acknowledge

This work was supported by the U.S. Department of Energy (DOE) under award DE-OE0000895 and the Sandia National Laboratories’ directed R&D project #222444.

Owner
Python/JavaScript/Rust
The purpose is to have a fairly simple python assignment that introduces the basic features and tools of python

This repository contains the code for the python introduction lab. The purpose is to have a fairly simple python assignment that introduces the basic

1 Jan 24, 2022
A redesign of our previous Python World Cup, aiming to simulate the 2022 World Cup all the way from the qualifiers

A redesign of our previous Python World Cup, aiming to simulate the 2022 World Cup all the way from the qualifiers. This new version is designed to be more compact and more efficient and will reflect

Sam Counsell 1 Jan 07, 2022
Qt-creator-boost-debugging-helper - Qt Creator Debugging Helper for Boost Library

Go to Tools Options Debugger Locals & Expressions. Paste the script path t

Dmitry Bravikov 2 Apr 22, 2022
The newest contender in Server Gateway Interface.

nsgi The newest contender in Server Gateway Interface. Why use this webserver? This webserver is made with the newest version of asyncio, and sockets,

OpenRobot 1 Feb 12, 2022
My custom Fedora ostree build with sway/wayland.

Ramblurr's Sway Desktop This is an rpm-ostree based minimal Fedora developer desktop with the sway window manager and podman/toolbox for doing develop

Casey Link 1 Nov 28, 2021
Scripts for BGC analysis in large MAGs and results of their application to soil metagenomes within Chernevaya Taiga RSF-funded project

Scripts for BGC analysis in large MAGs and results of their application to soil metagenomes within Chernevaya Taiga RSF-funded project

1 Dec 06, 2021
A person does not exist image bot

A person does not exist image bot

Fayas Noushad 3 Dec 12, 2021
Astroquery is an astropy affiliated package that contains a collection of tools to access online Astronomical data.

Astroquery is an astropy affiliated package that contains a collection of tools to access online Astronomical data.

The Astropy Project 631 Jan 05, 2023
Telegram bot for Urban Dictionary.

Urban Dictionary Bot @TheUrbanDictBot A star ⭐ from you means a lot to us! Telegram bot for Urban Dictionary. Usage Deploy to Heroku Tap on above butt

Stark Bots 17 Nov 24, 2022
Resources for the 2021 offering of COMP 598

comp598-2021 Resources for the 2021 offering of COMP 598 General submission instructions Important Please read these instructions located in the corre

Derek Ruths 23 May 18, 2022
Types for the Rasterio package

types-rasterio Types for the rasterio package A work in progress Install Not yet published to PyPI pip install types-rasterio These type definitions

Kyle Barron 7 Sep 10, 2021
A sage package for working with circular genomes represented by signed or unsigned permutations

Circular genome tools (cgt) A sage package for working with circular genomes represented by signed or unsigned permutations. It includes tools for con

Joshua Stevenson 1 Mar 10, 2022
Msgpack serialization/deserialization library for Python, written in Rust using PyO3 and rust-msgpack. Reboot of orjson. msgpack.org[Python]

ormsgpack ormsgpack is a fast msgpack library for Python. It is a fork/reboot of orjson It serializes faster than msgpack-python and deserializes a bi

Aviram Hassan 139 Dec 30, 2022
Convert Photoshop curves (acv) to xmp presets for Lightroom

acv2xmp Convert Photoshop curves (acv) to Lightroom preset (xmp) acv2xmp.py Basic command prompt that relies on standard library only and can be used

5 Feb 06, 2022
Object-data mapper and advanced query manager for non relational databases

Object data mapper and advanced query manager for non relational databases. The data is owned by different, configurable back-end databases and it is

Luca Sbardella 121 Aug 11, 2022
A Sophisticated And Beautiful Doxing Tool

Garuda V1.1 A Sophisticated And Beautiful Doxing Tool Works on Android[Termux] | Linux | Windows Don't Forget to give it a star ❗ How to use ❓ First o

The Cryptonian 67 Jan 10, 2022
A program that makes all 47 textures of Optifine CTM only using 2 textures

A program that makes all 47 textures of Optifine CTM only using 2 textures

1 Jan 22, 2022
Wrapper for the undocumented CodinGame API. Can be used both synchronously and asynchronlously.

codingame API wrapper Pythonic wrapper for the undocumented CodinGame API. Installation Python 3.6 or higher is required. Install codingame with pip:

Takos 19 Jun 20, 2022
Konomi: Kind and Optimized Next brOadcast watching systeM Infrastructure

Konomi 備考・注意事項 現在 α 版で、まだ実験的なプロダクトです。通常利用には耐えないでしょうし、サポートもできません。 安定しているとは到底言いがたい品質ですが、それでも構わない方のみ導入してください。 使い方などの説明も用意できていないため、自力でトラブルに対処できるエンジニアの方以外に

tsukumi 243 Dec 30, 2022
Application launcher and environment management

Application launcher and environment management for 21st century games and digital post-production, built with bleeding-rez and Qt.py News Date Releas

10 Nov 03, 2022