Th2En & Th2Zh: The large-scale datasets for Thai text cross-lingual summarization

Overview

Th2En & Th2Zh: The large-scale datasets for Thai text cross-lingual summarization

📥 Download Datasets
📥 Download Trained Models

INTRODUCTION

TH2ZH (Thai-to-Simplified Chinese) and TH2EN (Thai-to-English) are cross-lingual summarization (CLS) datasets. The source articles of these datasets are from TR-TPBS dataset, a monolingual Thai text summarization dataset. To create CLS dataset out of TR-TPBS, we used a neural machine translation service to translate articles into target languages. For some reasons, we were strongly recommended not to mention the name of the service that we used 🥺 . We will refer to the service we used as ‘main translation service’.

Cross-lingual summarization (cross-sum) is a task to summarize a given document written in one language to another language short summary.

crosslingual summarization

Traditional cross-sum approaches are based on two techniques namely early translation technique and late translation technique. Early translation can be explained easily as translate-then-summarize method. Late translation, in reverse, is summarize-then-translate method.

However, classical cross-sum methods tend to carry errors from monolingual summarization process or translation process to final cross-language output summary. Several end-to-end approaches have been proposed to tackle problems of traditional ones. Couple of end-to-end models are available to download as well.

DATASET CONSTRUCTION

💡 Important Note In contrast to Zhu, et al, in our experiment, we found that filtering out articles using RTT technique worsen the overall performance of the end-to-end models significantly. Therefore, full datasets are highly recommended.

We used TR-TPBS as source documents for creating cross-lingual summarization dataset. In the same way as Zhu, et al., we constructed Th2En and Th2Zh by translating the summary references into target languages using translation service and filtered out those poorly-translated summaries using round-trip translation technique (RTT). The overview of cross-lingual summarization dataset construction is presented in belowe figure. Please refer to the corresponding paper for more details on RTT.

crosslingual summarization In our experiment, we set 𝑇1 and 𝑇2 equal to 0.45 and 0.2 respectively, backtranslation technique filtered out 27.98% from Th2En and 56.79% documents from Th2Zh.

python3 src/tools/cls_dataset_construction.py \
--dataset th2en \
--input_csv path/to/full_dataset.csv \
--output_csv path/to/save/filtered_csv \
--r1 0.45 \
--r2 0.2
  • --dataset can be {th2en, th2zh}.
  • --r1 and --r2 are where you can set ROUGE score thresholds (r1 and r2 represent ROUGE-1 and ROUGE-2 respectively) for filtering (assumingly) poor translated articles.

Dataset Statistic

Click the file name to download.

File Number of Articles Size
th2en_full.csv 310,926 2.96 GB
th2zh_full.csv 310,926 2.81 GB
testset.csv 3,000 44 MB
validation.csv 3,000 43 MB

Data Fields

Please refer to th2enzh_data_exploration.ipynb for more details.

Column Description
th_body Original Thai body text
th_sum Original Thai summary
th_title Original Thai Article headline
{en/zh}_body Translated body text
{en/zh}_sum Translated summary
{en/zh}_title Translated article's headline
{en/zh}2th Back translation of{en/zh}_body
{en/zh}_gg_sum Translated summary (by Google Translation)
url URL to original article’s webpage
  • {th/en/zh}_title are only available in test set.
  • {en/zh}_gg_sum are also only available in test set. We (at the time this experiment took place) assumed that Google translation was better than the main translation service we were using. We intended to use these Google translated summaries as some kind of alternative summary references, but in the end, they never been used. We decided to make them available in the test set anyway, just in case the others find them useful.
  • {en/zh}_body were not presented during training end-to-end models. They were used only in early translation methods.

AVAILABLE TRAINED MODELS

Model Corresponding Paper Thai -> English Thai -> Simplified Chinese
Full Filtered Full Filtered
TNCLS Zhu et al., 2019 - Available - -
CLS+MS Zhu et al., 2019 Available - - -
CLS+MT Zhu et al., 2019 Available - Available -
XLS – RL-ROUGE Dou et al., 2020 Available - Available -

To evaluate these trained models, please refer to xls_model_evaluation.ipynb and ncls_model_evaluation.ipynb.

If you wish to evaluate the models with our test sets, you can use below script to create test files for XLS and NCLS models.

python3 src/tools/create_cls_test_manifest.py \
--test_csv_path path/to/testset.csv \
--output_dir path/to/save/testset_files \
--use_google_sum {true/false} \
--max_tokens 500 \
--create_ms_ref {true/false}
  • output_dir is path to directory that you want to save test set files
  • use_google_sum can be {true/false}. If true, it will select summary reference from columns {en/zh}_gg_sum. Default is false.
  • max_tokens number of maximum words in input articles. Default is 500 words. Too short or too long articles can significantly worsen performance of the models.
  • create_ms_ref whether to create Thai summary reference file to evaluate MS task in NCLS:CLS+MS model.

This script will produce three files namely test.CLS.source.thai.txt and test.CLS.target.{en/zh}.txt. test.CLS.source.thai.txt is used as a test file for cls task. test.CLS.target.{en/zh}.txt are the crosslingual summary reference for English and Chinese, they are used to evaluate ROUGE and BertScore. Each line is corresponding to the body articles in test.CLS.source.thai.txt.

🥳 We also evaluated MT tasks in XLS and NCLS:CLS+MT models. Please refers to xls_model_evaluation.ipynb and ncls_model_evaluation.ipynb for BLUE score results . For test sets that we used to evaluate MT task, please refer to data/README.md.

EXPERIMENT RESULTS

🔆 It has to be noted that all of end-to-end models reported in this section were trained on filtered datasets NOT full datasets. And for all end-to-end models, only `th_body` and `{en/zh}_sum` were present during training. We trained end-to-end models for 1,000,000 steps and selected model checkpoints that yielded the highest overall ROUGE scores to report the experiment.

In this experiment, we used two automatic evaluation matrices namely ROUGE and BertScore to assess the performance of CLS models. We evaluated ROUGE on Chinese text at word-level, NOT character level.

We only reported BertScore on abstractive summarization models. To evaluate the results with BertScore we used weights from ‘roberta-large’ and ‘bert-base-chinese’ pretrained models for Th2En and Th2Zh respectively.

Model Thai to English Thai to Chinese
ROUGE BertScore ROUGE BertScore
R1 R2 RL F1 R1 R2 RL F1
Traditional Approaches
Translated Headline 23.44 6.99 21.49 - 21.55 4.66 18.58 -
ETrans → LEAD2 51.96 42.15 50.01 - 44.18 18.83 43.84 -
ETrans → BertSumExt 51.85 38.09 49.50 - 34.58 14.98 34.84 -
ETrans → BertSumExtAbs 52.63 32.19 48.14 88.18 35.63 16.02 35.36 70.42
BertSumExt → LTrans 42.33 27.33 34.85 - 28.11 18.85 27.46 -
End-to-End Training Approaches
TNCLS 26.48 6.65 21.66 85.03 27.09 6.69 21.99 63.72
CLS+MS 32.28 15.21 34.68 87.22 34.34 12.23 28.80 67.39
CLS+MT 42.85 19.47 39.48 88.06 42.48 19.10 37.73 71.01
XLS – RL-ROUGE 42.82 19.62 39.53 88.03 43.20 19.19 38.52 72.19

LICENSE

Thai crosslingual summarization datasets including TH2EN, TH2ZH, test and validation set are licensed under MIT License.

ACKNOWLEDGEMENT

  • These cross-lingual datasets and the experiments are parts of Nakhun Chumpolsathien ’s master’s thesis at school of computer science, Beijing Institute of Technology. Therefore, as well, a great appreciation goes to his supervisor, Assoc. Prof. Gao Yang.
  • Shout out to Tanachat Arayachutinan for the initial data processing and for introducing me 麻辣烫, 黄焖鸡.
  • We would like to thank Beijing Engineering Research Center of High Volume Language Information Processing and Cloud Computing Applications for providing computing resources to conduct the experiment.
  • In this experiment, we used PyThaiNLP v. 2.2.4 to tokenize (on both word & sentence levels) Thai texts. For Chinese and English segmentation, we used Stanza.
Owner
Nakhun Chumpolsathien
I thought it was fun.
Nakhun Chumpolsathien
A PyTorch implementation of the WaveGlow: A Flow-based Generative Network for Speech Synthesis

WaveGlow A PyTorch implementation of the WaveGlow: A Flow-based Generative Network for Speech Synthesis Quick Start: Install requirements: pip install

Yuchao Zhang 204 Jul 14, 2022
An implementation of WaveNet with fast generation

pytorch-wavenet This is an implementation of the WaveNet architecture, as described in the original paper. Features Automatic creation of a dataset (t

Vincent Herrmann 858 Dec 27, 2022
Sentiment-Analysis and EDA on the IMDB Movie Review Dataset

Sentiment-Analysis and EDA on the IMDB Movie Review Dataset The main part of the work focuses on the exploration and study of different approaches whi

Nikolas Petrou 1 Jan 12, 2022
A full spaCy pipeline and models for scientific/biomedical documents.

This repository contains custom pipes and models related to using spaCy for scientific documents. In particular, there is a custom tokenizer that adds

AI2 1.3k Jan 03, 2023
FastFormers - highly efficient transformer models for NLU

FastFormers FastFormers provides a set of recipes and methods to achieve highly efficient inference of Transformer models for Natural Language Underst

Microsoft 678 Jan 05, 2023
txtai: Build AI-powered semantic search applications in Go

txtai: Build AI-powered semantic search applications in Go txtai executes machine-learning workflows to transform data and build AI-powered semantic s

NeuML 49 Dec 06, 2022
Korean Sentence Embedding Repository

Korean-Sentence-Embedding 🍭 Korean sentence embedding repository. You can download the pre-trained models and inference right away, also it provides

80 Jan 02, 2023
Python bindings to the dutch NLP tool Frog (pos tagger, lemmatiser, NER tagger, morphological analysis, shallow parser, dependency parser)

Frog for Python This is a Python binding to the Natural Language Processing suite Frog. Frog is intended for Dutch and performs part-of-speech tagging

Maarten van Gompel 46 Dec 14, 2022
SummerTime - Text Summarization Toolkit for Non-experts

A library to help users choose appropriate summarization tools based on their specific tasks or needs. Includes models, evaluation metrics, and datasets.

Yale-LILY 213 Jan 04, 2023
Code for hyperboloid embeddings for knowledge graph entities

Implementation for the papers: Self-Supervised Hyperboloid Representations from Logical Queries over Knowledge Graphs, Nurendra Choudhary, Nikhil Rao,

30 Dec 10, 2022
fastai ulmfit - Pretraining the Language Model, Fine-Tuning and training a Classifier

fast.ai ULMFiT with SentencePiece from pretraining to deployment Motivation: Why even bother with a non-BERT / Transformer language model? Short answe

Florian Leuerer 26 May 27, 2022
open-information-extraction-system, build open-knowledge-graph(SPO, subject-predicate-object) by pyltp(version==3.4.0)

中文开放信息抽取系统, open-information-extraction-system, build open-knowledge-graph(SPO, subject-predicate-object) by pyltp(version==3.4.0)

7 Nov 02, 2022
COVID-19 Related NLP Papers

COVID-19 outbreak has become a global pandemic. NLP researchers are fighting the epidemic in their own way.

xcfeng 28 Oct 30, 2022
Twitter-Sentiment-Analysis - Twitter sentiment analysis for india's top online retailers(2019 to 2022)

Twitter-Sentiment-Analysis Twitter sentiment analysis for india's top online retailers(2019 to 2022) Project Overview : Sentiment Analysis helps us to

Balaji R 1 Jan 01, 2022
Fine-tune GPT-3 with a Google Chat conversation history

Google Chat GPT-3 This repo will help you fine-tune GPT-3 with a Google Chat conversation history. The trained model will be able to converse as one o

Nate Baer 7 Dec 10, 2022
Uses Google's gTTS module to easily create robo text readin' on command.

Tool to convert text to speech, creating files for later use. TTRS uses Google's gTTS module to easily create robo text readin' on command.

0 Jun 20, 2021
HuggingSound: A toolkit for speech-related tasks based on HuggingFace's tools

HuggingSound HuggingSound: A toolkit for speech-related tasks based on HuggingFace's tools. I have no intention of building a very complex tool here.

Jonatas Grosman 247 Dec 26, 2022
Text classification on IMDB dataset using Keras and Bi-LSTM network

Text classification on IMDB dataset using Keras and Bi-LSTM Text classification on IMDB dataset using Keras and Bi-LSTM network. Usage python3 main.py

Hamza Rashid 2 Sep 27, 2022
BPEmb is a collection of pre-trained subword embeddings in 275 languages, based on Byte-Pair Encoding (BPE) and trained on Wikipedia.

BPEmb is a collection of pre-trained subword embeddings in 275 languages, based on Byte-Pair Encoding (BPE) and trained on Wikipedia. Its intended use is as input for neural models in natural languag

Benjamin Heinzerling 1.1k Jan 03, 2023
Transformer Based Korean Sentence Spacing Corrector

TKOrrector Transformer Based Korean Sentence Spacing Corrector License Summary This solution is made available under Apache 2 license. See the LICENSE

Paul Hyung Yuel Kim 3 Apr 18, 2022