Th2En & Th2Zh: The large-scale datasets for Thai text cross-lingual summarization

Overview

Th2En & Th2Zh: The large-scale datasets for Thai text cross-lingual summarization

📥 Download Datasets
📥 Download Trained Models

INTRODUCTION

TH2ZH (Thai-to-Simplified Chinese) and TH2EN (Thai-to-English) are cross-lingual summarization (CLS) datasets. The source articles of these datasets are from TR-TPBS dataset, a monolingual Thai text summarization dataset. To create CLS dataset out of TR-TPBS, we used a neural machine translation service to translate articles into target languages. For some reasons, we were strongly recommended not to mention the name of the service that we used 🥺 . We will refer to the service we used as ‘main translation service’.

Cross-lingual summarization (cross-sum) is a task to summarize a given document written in one language to another language short summary.

crosslingual summarization

Traditional cross-sum approaches are based on two techniques namely early translation technique and late translation technique. Early translation can be explained easily as translate-then-summarize method. Late translation, in reverse, is summarize-then-translate method.

However, classical cross-sum methods tend to carry errors from monolingual summarization process or translation process to final cross-language output summary. Several end-to-end approaches have been proposed to tackle problems of traditional ones. Couple of end-to-end models are available to download as well.

DATASET CONSTRUCTION

💡 Important Note In contrast to Zhu, et al, in our experiment, we found that filtering out articles using RTT technique worsen the overall performance of the end-to-end models significantly. Therefore, full datasets are highly recommended.

We used TR-TPBS as source documents for creating cross-lingual summarization dataset. In the same way as Zhu, et al., we constructed Th2En and Th2Zh by translating the summary references into target languages using translation service and filtered out those poorly-translated summaries using round-trip translation technique (RTT). The overview of cross-lingual summarization dataset construction is presented in belowe figure. Please refer to the corresponding paper for more details on RTT.

crosslingual summarization In our experiment, we set 𝑇1 and 𝑇2 equal to 0.45 and 0.2 respectively, backtranslation technique filtered out 27.98% from Th2En and 56.79% documents from Th2Zh.

python3 src/tools/cls_dataset_construction.py \
--dataset th2en \
--input_csv path/to/full_dataset.csv \
--output_csv path/to/save/filtered_csv \
--r1 0.45 \
--r2 0.2
  • --dataset can be {th2en, th2zh}.
  • --r1 and --r2 are where you can set ROUGE score thresholds (r1 and r2 represent ROUGE-1 and ROUGE-2 respectively) for filtering (assumingly) poor translated articles.

Dataset Statistic

Click the file name to download.

File Number of Articles Size
th2en_full.csv 310,926 2.96 GB
th2zh_full.csv 310,926 2.81 GB
testset.csv 3,000 44 MB
validation.csv 3,000 43 MB

Data Fields

Please refer to th2enzh_data_exploration.ipynb for more details.

Column Description
th_body Original Thai body text
th_sum Original Thai summary
th_title Original Thai Article headline
{en/zh}_body Translated body text
{en/zh}_sum Translated summary
{en/zh}_title Translated article's headline
{en/zh}2th Back translation of{en/zh}_body
{en/zh}_gg_sum Translated summary (by Google Translation)
url URL to original article’s webpage
  • {th/en/zh}_title are only available in test set.
  • {en/zh}_gg_sum are also only available in test set. We (at the time this experiment took place) assumed that Google translation was better than the main translation service we were using. We intended to use these Google translated summaries as some kind of alternative summary references, but in the end, they never been used. We decided to make them available in the test set anyway, just in case the others find them useful.
  • {en/zh}_body were not presented during training end-to-end models. They were used only in early translation methods.

AVAILABLE TRAINED MODELS

Model Corresponding Paper Thai -> English Thai -> Simplified Chinese
Full Filtered Full Filtered
TNCLS Zhu et al., 2019 - Available - -
CLS+MS Zhu et al., 2019 Available - - -
CLS+MT Zhu et al., 2019 Available - Available -
XLS – RL-ROUGE Dou et al., 2020 Available - Available -

To evaluate these trained models, please refer to xls_model_evaluation.ipynb and ncls_model_evaluation.ipynb.

If you wish to evaluate the models with our test sets, you can use below script to create test files for XLS and NCLS models.

python3 src/tools/create_cls_test_manifest.py \
--test_csv_path path/to/testset.csv \
--output_dir path/to/save/testset_files \
--use_google_sum {true/false} \
--max_tokens 500 \
--create_ms_ref {true/false}
  • output_dir is path to directory that you want to save test set files
  • use_google_sum can be {true/false}. If true, it will select summary reference from columns {en/zh}_gg_sum. Default is false.
  • max_tokens number of maximum words in input articles. Default is 500 words. Too short or too long articles can significantly worsen performance of the models.
  • create_ms_ref whether to create Thai summary reference file to evaluate MS task in NCLS:CLS+MS model.

This script will produce three files namely test.CLS.source.thai.txt and test.CLS.target.{en/zh}.txt. test.CLS.source.thai.txt is used as a test file for cls task. test.CLS.target.{en/zh}.txt are the crosslingual summary reference for English and Chinese, they are used to evaluate ROUGE and BertScore. Each line is corresponding to the body articles in test.CLS.source.thai.txt.

🥳 We also evaluated MT tasks in XLS and NCLS:CLS+MT models. Please refers to xls_model_evaluation.ipynb and ncls_model_evaluation.ipynb for BLUE score results . For test sets that we used to evaluate MT task, please refer to data/README.md.

EXPERIMENT RESULTS

🔆 It has to be noted that all of end-to-end models reported in this section were trained on filtered datasets NOT full datasets. And for all end-to-end models, only `th_body` and `{en/zh}_sum` were present during training. We trained end-to-end models for 1,000,000 steps and selected model checkpoints that yielded the highest overall ROUGE scores to report the experiment.

In this experiment, we used two automatic evaluation matrices namely ROUGE and BertScore to assess the performance of CLS models. We evaluated ROUGE on Chinese text at word-level, NOT character level.

We only reported BertScore on abstractive summarization models. To evaluate the results with BertScore we used weights from ‘roberta-large’ and ‘bert-base-chinese’ pretrained models for Th2En and Th2Zh respectively.

Model Thai to English Thai to Chinese
ROUGE BertScore ROUGE BertScore
R1 R2 RL F1 R1 R2 RL F1
Traditional Approaches
Translated Headline 23.44 6.99 21.49 - 21.55 4.66 18.58 -
ETrans → LEAD2 51.96 42.15 50.01 - 44.18 18.83 43.84 -
ETrans → BertSumExt 51.85 38.09 49.50 - 34.58 14.98 34.84 -
ETrans → BertSumExtAbs 52.63 32.19 48.14 88.18 35.63 16.02 35.36 70.42
BertSumExt → LTrans 42.33 27.33 34.85 - 28.11 18.85 27.46 -
End-to-End Training Approaches
TNCLS 26.48 6.65 21.66 85.03 27.09 6.69 21.99 63.72
CLS+MS 32.28 15.21 34.68 87.22 34.34 12.23 28.80 67.39
CLS+MT 42.85 19.47 39.48 88.06 42.48 19.10 37.73 71.01
XLS – RL-ROUGE 42.82 19.62 39.53 88.03 43.20 19.19 38.52 72.19

LICENSE

Thai crosslingual summarization datasets including TH2EN, TH2ZH, test and validation set are licensed under MIT License.

ACKNOWLEDGEMENT

  • These cross-lingual datasets and the experiments are parts of Nakhun Chumpolsathien ’s master’s thesis at school of computer science, Beijing Institute of Technology. Therefore, as well, a great appreciation goes to his supervisor, Assoc. Prof. Gao Yang.
  • Shout out to Tanachat Arayachutinan for the initial data processing and for introducing me 麻辣烫, 黄焖鸡.
  • We would like to thank Beijing Engineering Research Center of High Volume Language Information Processing and Cloud Computing Applications for providing computing resources to conduct the experiment.
  • In this experiment, we used PyThaiNLP v. 2.2.4 to tokenize (on both word & sentence levels) Thai texts. For Chinese and English segmentation, we used Stanza.
Owner
Nakhun Chumpolsathien
I thought it was fun.
Nakhun Chumpolsathien
Idea is to build a model which will take keywords as inputs and generate sentences as outputs.

keytotext Idea is to build a model which will take keywords as inputs and generate sentences as outputs. Potential use case can include: Marketing Sea

Gagan Bhatia 364 Jan 03, 2023
Syntax-aware Multi-spans Generation for Reading Comprehension (TASLP 2022)

SyntaxGen Syntax-aware Multi-spans Generation for Reading Comprehension (TASLP 2022) In this repo, we upload all the scripts for this work. Due to siz

Zhuosheng Zhang 3 Jun 13, 2022
[NeurIPS 2021] Code for Learning Signal-Agnostic Manifolds of Neural Fields

Learning Signal-Agnostic Manifolds of Neural Fields This is the uncleaned code for the paper Learning Signal-Agnostic Manifolds of Neural Fields. The

60 Dec 12, 2022
Crie tokens de autenticação íntegros e seguros com UToken.

UToken - Tokens seguros. UToken (ou Unhandleable Token) é uma bilioteca criada para ser utilizada na geração de tokens seguros e íntegros, ou seja, nã

Jaedson Silva 0 Nov 29, 2022
Use fastai-v2 with HuggingFace's pretrained transformers

FastHugs Use fastai v2 with HuggingFace's pretrained transformers, see the notebooks below depending on your task: Text classification: fasthugs_seq_c

Morgan McGuire 111 Nov 16, 2022
Pretty-doc - Composable text objects with python

pretty-doc from __future__ import annotations from dataclasses import dataclass

Taine Zhao 2 Jan 17, 2022
Web Scraping, Document Deduplication & GPT-2 Fine-tuning with a newly created scam dataset.

Web Scraping, Document Deduplication & GPT-2 Fine-tuning with a newly created scam dataset.

18 Nov 28, 2022
[WWW 2021 GLB] New Benchmarks for Learning on Non-Homophilous Graphs

New Benchmarks for Learning on Non-Homophilous Graphs Here are the codes and datasets accompanying the paper: New Benchmarks for Learning on Non-Homop

94 Dec 21, 2022
Neural-Machine-Translation - Implementation of revolutionary machine translation models

Neural Machine Translation Framework: PyTorch Repository contaning my implementa

Utkarsh Jain 1 Feb 17, 2022
Applied Natural Language Processing in the Enterprise - An O'Reilly Media Publication

Applied Natural Language Processing in the Enterprise This is the companion repo for Applied Natural Language Processing in the Enterprise, an O'Reill

Applied Natural Language Processing in the Enterprise 95 Jan 05, 2023
Transformer related optimization, including BERT, GPT

This repository provides a script and recipe to run the highly optimized transformer-based encoder and decoder component, and it is tested and maintained by NVIDIA.

NVIDIA Corporation 1.7k Jan 04, 2023
LCG T-TEST USING EUCLIDEAN METHOD

This project has been created for statistical usage, purposing for determining ATL takers and nontakers using LCG ttest and Euclidean Method, especially for internal business case in Telkomsel.

2 Jan 21, 2022
Code Implementation of "Learning Span-Level Interactions for Aspect Sentiment Triplet Extraction".

Span-ASTE: Learning Span-Level Interactions for Aspect Sentiment Triplet Extraction ***** New March 31th, 2022: Scikit-Style API for Easy Usage *****

Chia Yew Ken 111 Dec 23, 2022
A Survey of Natural Language Generation in Task-Oriented Dialogue System (TOD): Recent Advances and New Frontiers

A Survey of Natural Language Generation in Task-Oriented Dialogue System (TOD): Recent Advances and New Frontiers

Libo Qin 132 Nov 25, 2022
Machine learning models from Singapore's NLP research community

SG-NLP Machine learning models from Singapore's natural language processing (NLP) research community. sgnlp is a Python package that allows you to eas

AI Singapore | AI Makerspace 21 Dec 17, 2022
German Text-To-Speech Engine using Tacotron and Griffin-Lim

jotts JoTTS is a German text-to-speech engine using tacotron and griffin-lim. The synthesizer model has been trained on my voice using Tacotron1. Due

padmalcom 6 Aug 28, 2022
LV-BERT: Exploiting Layer Variety for BERT (Findings of ACL 2021)

LV-BERT Introduction In this repo, we introduce LV-BERT by exploiting layer variety for BERT. For detailed description and experimental results, pleas

Weihao Yu 14 Aug 24, 2022
Refactored version of FastSpeech2

Refactored version of FastSpeech2. An implementation of Microsoft's "FastSpeech 2: Fast and High-Quality End-to-End Text to Speech"

ILJI CHOI 10 May 26, 2022
中文生成式预训练模型

T5 PEGASUS 中文生成式预训练模型,以mT5为基础架构和初始权重,通过类似PEGASUS的方式进行预训练。 详情可见:https://kexue.fm/archives/8209 Tokenizer 我们将T5 PEGASUS的Tokenizer换成了BERT的Tokenizer,它对中文更

410 Jan 03, 2023
Pytorch version of BERT-whitening

BERT-whitening This is the Pytorch implementation of "Whitening Sentence Representations for Better Semantics and Faster Retrieval". BERT-whitening is

Weijie Liu 255 Dec 27, 2022