Benchmarking the robustness of Spatial-Temporal Models

Overview

Benchmarking the robustness of Spatial-Temporal Models

This repositery contains the code for the paper Benchmarking the Robustness of Spatial-Temporal Models Against Corruptions.

Python 2.7 and 3.7, Pytorch 1.7+, FFmpeg are required.

Requirements

pip3 install - requirements.txt

Mini Kinetics-C

image info

Download original Kinetics400 from link.

The Mini Kinetics-C contains half of the classes in Kinetics400. All the classes can be found in mini-kinetics-200-classes.txt.

Mini Kinetics-C Leaderboard

Corruption robustness of spatial-temporal models trained on clean Mini Kinetics and evaluated on Mini Kinetics-C.

Approach Reference Backbone Input Length Sampling Method Clean Accuracy mPC rPC
TimeSformer Gedas et al. Transformer 32 Uniform 82.2 71.4 86.9
3D ResNet K. Hara et al. ResNet-50 32 Uniform 73.0 59.2 81.1
I3D J. Carreira et al. InceptionV1 32 Uniform 70.5 57.7 81.8
SlowFast 8x4 C. Feichtenhofer at al. ResNet-50 32 Uniform 69.2 54.3 78.5
3D ResNet K. Hara et al. ResNet-18 32 Uniform 66.2 53.3 80.5
TAM Q.Fan et al. ResNet-50 32 Uniform 66.9 50.8 75.9
X3D-M C. Feichtenhofer ResNet-50 32 Uniform 62.6 48.6 77.6

For fair comparison, it is recommended to submit the result of approach which follows the following settings: Backbone of ResNet-50, Input Length of 32, Uniform Sampling at Clip Level. Any result on our benchmark can be submitted via pull request.

Mini SSV2-C

image info

Download original Something-Something-V2 datset from link.

The Mini SSV2-C contains half of the classes in Something-Something-V2. All the classes can be found in mini-ssv2-87-classes.txt.

Mini SSV2-C Leaderboard

Corruption robustness of spatial-temporal models trained on clean Mini SSV2 and evaluated on Mini SSV2-C.

Approach Reference Backbone Input Length Sampling Method Clean Accuracy mPC rPC
TimeSformer Gedas et al. Transformer 16 Uniform 60.5 49.7 82.1
I3D J. Carreira et al. InceptionV1 32 Uniform 58.5 47.8 81.7
3D ResNet K. Hara et al. ResNet-50 32 Uniform 57.4 46.6 81.2
TAM Q.Fan et al. ResNet-50 32 Uniform 61.8 45.7 73.9
3D ResNet K. Hara et al. ResNet-18 32 Uniform 53.0 42.6 80.3
X3D-M C. Feichtenhofer ResNet-50 32 Uniform 49.9 40.7 81.6
SlowFast 8x4 C. Feichtenhofer at al. ResNet-50 32 Uniform 48.7 38.4 78.8

For fair comparison, it is recommended to submit the result of approach which follows the following settings: Backbone of ResNet-50, Input Length of 32, Uniform Sampling at Clip Level. Any result on our benchmark can be submitted via pull request.

Training and Evaluation

To help researchers reproduce the benchmark results provided in our leaderboard, we include a simple framework for training and evaluating the spatial-temporal models in the folder: benchmark_framework.

Running the code

Assume the structure of data directories is the following:

~/
  datadir/
    mini_kinetics/
      train/
        .../ (directories of class names)
          ...(hdf5 file containing video frames)
    mini_kinetics-c/
      .../ (directories of corruption names)
        .../ (directories of severity level)
          .../ (directories of class names)
            ...(hdf5 file containing video frames)

Train I3D on the Mini Kinetics dataset with 4 GPUs and 16 CPU threads (for data loading). The input lenght is 32, the batch size is 32 and learning rate is 0.01.

python3 train.py --threed_data --dataset mini_kinetics400 --frames_per_group 1 --groups 32 --logdir snapshots/ \
--lr 0.01 --backbone_net i3d -b 32 -j 16 --cuda 0,1,2,3

Test I3D on the Mini Kinetics-C dataset (pretrained model is loaded)

python3 test_corruption.py --threed_data --dataset mini_kinetics400 --frames_per_group 1 --groups 32 --logdir snapshots/ \
--pretrained snapshots/mini_kinetics400-rgb-i3d_v2-ts-max-f32-cosine-bs32-e50-v1/model_best.pth.tar --backbone_net i3d -b 32 -j 16 -e --cuda 0,1,2,3

Owner
Yi Chenyu Ian
Yi Chenyu Ian
Data and codes for ACL 2021 paper: Towards Emotional Support Dialog Systems

Emotional-Support-Conversation Copyright Β© 2021 CoAI Group, Tsinghua University. All rights reserved. Data and codes are for academic research use onl

126 Dec 21, 2022
Contains supplementary materials for reproduce results in HMC divergence time estimation manuscript

Scalable Bayesian divergence time estimation with ratio transformations This repository contains the instructions and files to reproduce the analyses

Suchard Research Group 1 Sep 21, 2022
Code for HodgeNet: Learning Spectral Geometry on Triangle Meshes, in SIGGRAPH 2021.

HodgeNet | Webpage | Paper | Video HodgeNet: Learning Spectral Geometry on Triangle Meshes Dmitriy Smirnov, Justin Solomon SIGGRAPH 2021 Set-up To ins

Dima Smirnov 61 Nov 27, 2022
This game was designed to encourage young people not to gamble on lotteries, as the probablity of correctly guessing the number is infinitesimal!

Lottery Simulator 2022 for Web Launch Application Developed by John Seong in Ontario. This game was designed to encourage young people not to gamble o

John Seong 2 Sep 02, 2022
Using deep learning model to detect breast cancer.

Breast-Cancer-Detection Breast cancer is the most frequent cancer among women, with around one in every 19 women at risk. The number of cases of breas

1 Feb 13, 2022
The official implementation of paper "Finding the Task-Optimal Low-Bit Sub-Distribution in Deep Neural Networks" (IJCV under review).

DGMS This is the code of the paper "Finding the Task-Optimal Low-Bit Sub-Distribution in Deep Neural Networks". Installation Our code works with Pytho

Runpei Dong 3 Aug 28, 2022
PenguinSpeciesPredictionML - Basic model to predict Penguin species based on beak size and sex.

Penguin Species Prediction (ML) 🐧 πŸ‘¨πŸ½β€πŸ’» What? πŸ’» This project is a basic model using sklearn methods to predict Penguin species based on beak size

Tucker Paron 0 Jan 08, 2022
Perform Linear Classification with Multi-way Data

MultiwayClassification This is an R package to perform linear classification for data with multi-way structure. The distance-weighted discrimination (

Eric F. Lock 2 Dec 15, 2020
Voice Conversion by CycleGAN (θ―­ιŸ³ε…‹ιš†/语音转捒):CycleGAN-VC3

CycleGAN-VC3-PyTorch δΈ­ζ–‡θ―΄ζ˜Ž | English This code is a PyTorch implementation for paper: CycleGAN-VC3: Examining and Improving CycleGAN-VCs for Mel-spectr

Kun Ma 110 Dec 24, 2022
TensorFlow implementation of Deep Reinforcement Learning papers

Deep Reinforcement Learning in TensorFlow TensorFlow implementation of Deep Reinforcement Learning papers. This implementation contains: [1] Playing A

Taehoon Kim 1.6k Jan 03, 2023
A Confidence-based Iterative Solver of Depths and Surface Normals for Deep Multi-view Stereo

idn-solver Paper | Project Page This repository contains the code release of our ICCV 2021 paper: A Confidence-based Iterative Solver of Depths and Su

zhaowang 43 Nov 17, 2022
[NeurIPS'20] Multiscale Deep Equilibrium Models

Multiscale Deep Equilibrium Models πŸ’₯ πŸ’₯ πŸ’₯ πŸ’₯ This repo is deprecated and we will soon stop actively maintaining it, as a more up-to-date (and simple

CMU Locus Lab 221 Dec 26, 2022
yolox_backbone is a deep-learning library and is a collection of YOLOX Backbone models.

YOLOX-Backbone yolox-backbone is a deep-learning library and is a collection of YOLOX backbone models. Install pip install yolox-backbone Load a Pret

Yonghye Kwon 21 Dec 28, 2022
Unoffical reMarkable AddOn for Firefox.

reMarkable for Firefox (Download) This repo converts the offical reMarkable Chrome Extension into a Firefox AddOn published here under the name "Unoff

Jelle Schutter 45 Nov 28, 2022
Finetuning Pipeline

KLUE Baseline Korean(ν•œκ΅­μ–΄) KLUE-baseline contains the baseline code for the Korean Language Understanding Evaluation (KLUE) benchmark. See our paper fo

74 Dec 13, 2022
PyTorch Implementation of the SuRP algorithm by the authors of the AISTATS 2022 paper "An Information-Theoretic Justification for Model Pruning"

PyTorch Implementation of the SuRP algorithm by the authors of the AISTATS 2022 paper "An Information-Theoretic Justification for Model Pruning".

Berivan Isik 8 Dec 08, 2022
An Agnostic Computer Vision Framework - Pluggable to any Training Library: Fastai, Pytorch-Lightning with more to come

IceVision is the first agnostic computer vision framework to offer a curated collection with hundreds of high-quality pre-trained models from torchvision, MMLabs, and soon Pytorch Image Models. It or

airctic 789 Dec 29, 2022
Deepfake Scanner by Deepware.

Deepware Scanner (CLI) This repository contains the command-line deepfake scanner tool with the pre-trained models that are currently used at deepware

deepware 110 Jan 02, 2023
Official code for: A Probabilistic Hard Attention Model For Sequentially Observed Scenes

"A Probabilistic Hard Attention Model For Sequentially Observed Scenes" Authors: Samrudhdhi Rangrej, James Clark Accepted to: BMVC'21 A recurrent atte

5 Nov 19, 2022
[제 13회 νˆ¬λΉ…μŠ€ 컨퍼런슀] OK Mugle! - μž₯λ₯΄λΆ€ν„° λ©œλ‘œλ””κΉŒμ§€, Content-based Music Recommendation

Ok Mugle! 🎡 μž₯λ₯΄λΆ€ν„° λ©œλ‘œλ””κΉŒμ§€, Content-based Music Recommendation 'Ok Mugle!'은 제13회 νˆ¬λΉ…μŠ€ 컨퍼런슀(2022.01.15)μ—μ„œ μ§„ν–‰ν•œ μŒμ•… μΆ”μ²œ ν”„λ‘œμ νŠΈμž…λ‹ˆλ‹€. Description πŸ“– λ³Έ ν”„λ‘œμ νŠΈμ—μ„œλŠ” Kakao

SeongBeomLEE 5 Oct 09, 2022