A toolkit for developing and deploying serverless Python code in AWS Lambda.

Overview

python-lambda logo

pypi pypi

Python-lambda is a toolset for developing and deploying serverless Python code in AWS Lambda.

A call for contributors

With python-lambda and pytube both continuing to gain momentum, I'm calling for contributors to help build out new features, review pull requests, fix bugs, and maintain overall code quality. If you're interested, please email me at nficano[at]gmail.com.

Description

AWS Lambda is a service that allows you to write Python, Java, or Node.js code that gets executed in response to events like http requests or files uploaded to S3.

Working with Lambda is relatively easy, but the process of bundling and deploying your code is not as simple as it could be.

The Python-Lambda library takes away the guess work of developing your Python-Lambda services by providing you a toolset to streamline the annoying parts.

Requirements

  • Python 2.7, >= 3.6 (At the time of writing this, these are the Python runtimes supported by AWS Lambda).
  • Pip (~8.1.1)
  • Virtualenv (~15.0.0)
  • Virtualenvwrapper (~4.7.1)

Getting Started

First, you must create an IAM Role on your AWS account called lambda_basic_execution with the LambdaBasicExecution policy attached.

On your computer, create a new virtualenv and project folder.

$ mkvirtualenv pylambda
(pylambda) $ mkdir pylambda

Next, download Python-Lambda using pip via pypi.

(pylambda) $ pip install python-lambda

From your pylambda directory, run the following to bootstrap your project.

(pylambda) $ lambda init

This will create the following files: event.json, __init__.py, service.py, and config.yaml.

Let's begin by opening config.yaml in the text editor of your choice. For the purpose of this tutorial, the only required information is aws_access_key_id and aws_secret_access_key. You can find these by logging into the AWS management console.

Next let's open service.py, in here you'll find the following function:

def handler(event, context):
    # Your code goes here!
    e = event.get('e')
    pi = event.get('pi')
    return e + pi

This is the handler function; this is the function AWS Lambda will invoke in response to an event. You will notice that in the sample code e and pi are values in a dict. AWS Lambda uses the event parameter to pass in event data to the handler.

So if, for example, your function is responding to an http request, event will be the POST JSON data and if your function returns something, the contents will be in your http response payload.

Next let's open the event.json file:

{
  "pi": 3.14,
  "e": 2.718
}

Here you'll find the values of e and pi that are being referenced in the sample code.

If you now try and run:

(pylambda) $ lambda invoke -v

You will get:

# 5.858
# execution time: 0.00000310s
# function execution timeout: 15s

As you probably put together, the lambda invoke command grabs the values stored in the event.json file and passes them to your function.

The event.json file should help you develop your Lambda service locally. You can specify an alternate event.json file by passing the --event-file=<filename>.json argument to lambda invoke.

When you're ready to deploy your code to Lambda simply run:

(pylambda) $ lambda deploy

The deploy script will evaluate your virtualenv and identify your project dependencies. It will package these up along with your handler function to a zip file that it then uploads to AWS Lambda.

You can now log into the AWS Lambda management console to verify the code deployed successfully.

Wiring to an API endpoint

If you're looking to develop a simple microservice you can easily wire your function up to an http endpoint.

Begin by navigating to your AWS Lambda management console and clicking on your function. Click the API Endpoints tab and click "Add API endpoint".

Under API endpoint type select "API Gateway".

Next change Method to POST and Security to "Open" and click submit (NOTE: you should secure this for use in production, open security is used for demo purposes).

At last you need to change the return value of the function to comply with the standard defined for the API Gateway endpoint, the function should now look like this:

def handler(event, context):
    # Your code goes here!
    e = event.get('e')
    pi = event.get('pi')
    return {
        "statusCode": 200,
        "headers": { "Content-Type": "application/json"},
        "body": e + pi
    }

Now try and run:

$ curl --header "Content-Type:application/json" \
       --request POST \
       --data '{"pi": 3.14, "e": 2.718}' \
       https://<API endpoint URL>
# 5.8580000000000005

Environment Variables

Lambda functions support environment variables. In order to set environment variables for your deployed code to use, you can configure them in config.yaml. To load the value for the environment variable at the time of deployment (instead of hard coding them in your configuration file), you can use local environment values (see 'env3' in example code below).

environment_variables:
  env1: foo
  env2: baz
  env3: ${LOCAL_ENVIRONMENT_VARIABLE_NAME}

This would create environment variables in the lambda instance upon deploy. If your functions don't need environment variables, simply leave this section out of your config.

Uploading to S3

You may find that you do not need the toolkit to fully deploy your Lambda or that your code bundle is too large to upload via the API. You can use the upload command to send the bundle to an S3 bucket of your choosing. Before doing this, you will need to set the following variables in config.yaml:

role: basic_s3_upload
bucket_name: 'example-bucket'
s3_key_prefix: 'path/to/file/'

Your role must have s3:PutObject permission on the bucket/key that you specify for the upload to work properly. Once you have that set, you can execute lambda upload to initiate the transfer.

Deploying via S3

You can also choose to use S3 as your source for Lambda deployments. This can be done by issuing lambda deploy-s3 with the same variables/AWS permissions you'd set for executing the upload command.

Development

Development of "python-lambda" is facilitated exclusively on GitHub. Contributions in the form of patches, tests and feature creation and/or requests are very welcome and highly encouraged. Please open an issue if this tool does not function as you'd expect.

Environment Setup

  1. Install pipenv
  2. Install direnv
  3. Install Precommit (optional but preferred)
  4. cd into the project and enter "direnv allow" when prompted. This will begin installing all the development dependancies.
  5. If you installed pre-commit, run pre-commit install inside the project directory to setup the githooks.

Releasing to Pypi

Once you pushed your chances to master, run one of the following:

# If you're installing a major release:
make deploy-major

# If you're installing a minor release:
make deploy-minor

# If you're installing a patch release:
make deploy-patch
Owner
Nick Ficano
Hi, I'm Nick! I develop software and live in Smithtown, New York.
Nick Ficano
Create standalone, installable R Shiny apps using Electron

Create standalone, installable R Shiny apps using Electron

Chase Clark 5 Dec 24, 2021
Automated Content Feed Curator

Gathers posts from content feeds, filters, formats, delivers to you.

Alper S. Soylu 2 Jan 22, 2022
This is a library for simulate probability theory problems specialy conditional probability

This is a library for simulate probability theory problems specialy conditional probability. It is also useful to create custom single or joint distribution with specific PMF or PDF to get probabilit

Mohamadreza Kariminejad 6 Mar 30, 2022
A project for Perotti's MGIS350 for incorporating Flask

MGIS350_5 This is our project for Perotti's MGIS350 for incorporating Flask... RIT Dev Biz Apps Web Project A web-based Inventory system for company o

1 Nov 07, 2021
Create an application to visualize single/multiple Xandar Kardian people counting sensors detection result for a indoor area.

Program Design Purpose: We want to create an application to visualize single/multiple Xandar Kardian people counting sensors detection result for a indoor area.

2 Dec 28, 2022
Coffeematcher is a python library to randomly match participants for coffee meetings.

coffeematcher coffeematcher is a python library to randomly match participants for coffee meetings. Installation Clone the repository: git clone https

Thomas Wesselink 3 May 06, 2022
NGEBUG is a tool that sends viruses to victims

Ngebug NGEBUG adalah tools pengirim virus ke korban NGEBUG adalah tools virus terbaru yang berasal dari rusia Informasi lengkap ada didalam tools Run

Profesor Acc 3 Dec 13, 2021
Painel simples com consulta de cep,CNPJ,placa e ip

Painel mpm Um painel simples com consultas de IP, CNPJ, CEP e PLACA Início 🌐 apt update && apt upgrade -y pkg i python git pip install requests Insta

8 Feb 27, 2022
Bots in moderation and a game (for now)

Tutorial: come far funzionare il bot e durarlo per 24/7 (o quasi...) Ci sono 17 passi per seguire: Andare sul sito Replit https://replit.com/ Vedrete

ZacyKing 1 Dec 27, 2021
Pydesy package description (EN)

Pydesy package description (EN) Last version: 0.0.2 Geodetic library, which includes the following tasks: 1. Calculation of theodolite traverse (tachy

1 Feb 03, 2022
Fly DCS without a joystick

Intro Usage Delete all mouse view axis Install DCSEasyControlExports to your "Saved Games/DCS/" Path python DCSEasyControl/main.py Set DCS to F12 view

XuHao 36 Dec 27, 2022
A tool to improve Boolean satisfiability (SAT) solver user's life

SatHelper This is a tool to improve the Boolean satisfiability (SAT) and MaxSAT solver user's life. It helps you model various problems as SAT and Max

Tomas Balyo 1 Nov 16, 2021
A collection of some leetcode challenges in python and JavaScript

Python and Javascript Coding Challenges Some leetcode questions I'm currently working on to open up my mind to better ways of problem solving. Impleme

Ted Ngeene 1 Dec 20, 2021
qecsim is a Python 3 package for simulating quantum error correction using stabilizer codes.

qecsim qecsim is a Python 3 package for simulating quantum error correction using stabilizer codes.

44 Dec 20, 2022
Extra scripts to improve user experience related to OpenTaiko

OpenTaiko-Utils Extra scripts to improve user experience related to OpenTaiko osu2tja /!\ IMPORTANT NOTE /!\ Converted charts that aren't yours are fo

2 Dec 25, 2022
A clipboard where a user can add and retrieve multiple items to and from (resp) from the clipboard cache.

A clipboard where a user can add and retrieve multiple items to and from (resp) from the clipboard cache.

Gaurav Bhattacharjee 2 Feb 07, 2022
An ultra fast cross-platform multiple screenshots module in pure Python using ctypes.

Python MSS from mss import mss # The simplest use, save a screen shot of the 1st monitor with mss() as sct: sct.shot() An ultra fast cross-platfo

Mickaël Schoentgen 799 Dec 30, 2022
Beatsaber for Python

beatsaber Beatsaber for Python It was automatically generated with mkpylib. If you're reading this message, it m

Shawn Presser 3 Jul 30, 2021
On this repo, you'll find every codes I made during my NSI classes (informatical courses)

👨‍💻 👩‍💻 school-codes On this repo, you'll find every codes I made during my NSI classes (informatical courses) French for now since this repo is d

EDM 1.15 3 Dec 17, 2022
p5 is a Python package based on the core ideas of Processing.

p5 p5 is a Python library that provides high level drawing functionality to help you quickly create simulations and interactive art using Python. It c

p5py 645 Jan 04, 2023