Speedy Implementation of Instance-based Learning (IBL) agents in Python

Overview

A Python library to create single or multi Instance-based Learning (IBL) agents that are built based on Instance Based Learning Theory (IBLT) 1

References

[1] Cleotilde Gonzalez, Javier F. Lerch and Christian Lebiere (2003), Instance-based learning in dynamic decision making, Cognitive Science, 27, 591-635. DOI: 10.1016/S0364-0213(03)00031-4.

[2] Thuy Ngoc Nguyen, Duy Nhat Phan, Cleotilde Gonzalez (2021), SpeedyIBL: A Solution to the Curse of Exponential Growth in Instance-Based Learning Models of Decisions from Experience

Installation of speedy IBL

%pip install -U speedyibl
Requirement already satisfied: speedyibl in /usr/local/lib/python3.7/dist-packages (0.0.9)
Requirement already satisfied: wheel in /usr/local/lib/python3.7/dist-packages (from speedyibl) (0.37.0)
Requirement already satisfied: tabulate in /usr/local/lib/python3.7/dist-packages (from speedyibl) (0.8.9)
Requirement already satisfied: numpy in /usr/local/lib/python3.7/dist-packages (from speedyibl) (1.19.5)
Requirement already satisfied: setuptools>=42 in /usr/local/lib/python3.7/dist-packages (from speedyibl) (57.4.0)

Import libraries

from speedyibl import Agent
import random 
import numpy as np
import matplotlib.pyplot as plt

Illustration of IBL for Binary Choice Task

Task description

In each episode, the agent is required to choose one of two options: Safe or Risky. One option is Safe and it yields a fixed medium outcome (i.e., 3) every time it is chosen. The other option is Risky, and it yields a high outcome (4) with some probability 0.8, and a low outcome (0) with the complementary probability 0.2.

agent = Agent(default_utility=4.4) #define the agent with default_utility = 4.4, noise = 0.25 decay = 0.5
options = ['safe','risky'] # set of options
runs = 100 # number of runs (participants)
episodes = 100 # number of episodes (trials, rounds)
average_pmax = [] # to store average of performance (proportion of maximum reward expectation choice)

for r in range(runs):
  pmax = []
  agent.reset() #clear the memory for a new run
  for e in range(episodes):     

    choice = agent.choose(options)
    if choice == 'safe':
      agent.respond(3)
    elif random.random() <= 0.8:
      agent.respond(4)
    else:
      agent.respond(0)
    pmax.append(choice == 'risky')
  average_pmax.append(pmax)

Plot the result

plt.plot(range(episodes), np.mean(np.asarray(average_pmax),axis=0), 'o-', color='darkgreen', markersize=2, linestyle='--', label='speedyIBL')

plt.xlabel('Episode')
plt.ylabel('PMAX')
plt.title('Binary choice')
plt.grid(True)
plt.show()

png

Illustration of IBL for Insider Attack Game

Task description

In this game, players take the role of the attacker and their goal is to score points by “hacking” computers to steal proprietary data.

TARGETS = [ [ { "payment": 2, "penalty":  -1, "monitored_probability": 0.22 },
              { "payment": 8, "penalty":  -5, "monitored_probability": 0.51 },
              { "payment": 9, "penalty":  -9, "monitored_probability": 0.42 },
              { "payment": 9, "penalty": -10, "monitored_probability": 0.40 },
              { "payment": 2, "penalty":  -6, "monitored_probability": 0.08 },
              { "payment": 5, "penalty":  -5, "monitored_probability": 0.36 } ],
            [ { "payment": 5, "penalty":  -3, "monitored_probability": 0.41 },
              { "payment": 8, "penalty":  -5, "monitored_probability": 0.48 },
              { "payment": 7, "penalty":  -6, "monitored_probability": 0.41 },
              { "payment": 8, "penalty":  -9, "monitored_probability": 0.37 },
              { "payment": 5, "penalty":  -7, "monitored_probability": 0.27 },
              { "payment": 2, "penalty":  -4, "monitored_probability": 0.05 } ],
            [ { "payment": 3, "penalty":  -3, "monitored_probability": 0.30 },
              { "payment": 9, "penalty":  -4, "monitored_probability": 0.60 },
              { "payment": 6, "penalty":  -6, "monitored_probability": 0.40 },
              { "payment": 5, "penalty":  -8, "monitored_probability": 0.29 },
              { "payment": 3, "penalty":  -6, "monitored_probability": 0.20 },
              { "payment": 2, "penalty":  -2, "monitored_probability": 0.20 } ],
            [ { "payment": 4, "penalty":  -3, "monitored_probability": 0.37 },
              { "payment": 6, "penalty":  -3, "monitored_probability": 0.51 },
              { "payment": 7, "penalty":  -7, "monitored_probability": 0.40 },
              { "payment": 5, "penalty": -10, "monitored_probability": 0.24 },
              { "payment": 5, "penalty":  -9, "monitored_probability": 0.26 },
              { "payment": 3, "penalty":  -4, "monitored_probability": 0.23 } ] ]

COVERAGE = [ [ { 2, 6 }, { 2, 4 }, { 2, 5 }, { 2, 4 }, { 1, 3 },
               { 2, 4 }, { 1, 3 }, { 1, 3 }, { 2, 4 }, { 2, 6 },
               { 2, 6 }, { 2, 4 }, { 1, 3 }, { 2, 4 }, { 2, 4 },
               { 1, 3 }, { 3, 6 }, { 2, 4 }, { 2, 4 }, { 3, 6 },
               { 1, 3 }, { 2, 4 }, { 3, 6 }, { 2, 4 }, { 1, 3 } ],
             [ { 2, 5 }, { 1, 3 }, { 1, 3 }, { 3, 6 }, { 1, 3 },
               { 2, 4 }, { 1, 3 }, { 2, 4 }, { 1, 3 }, { 1, 4 },
               { 1, 3 }, { 1, 3 }, { 2, 5 }, { 1, 3 }, { 1, 3 },
               { 1, 3 }, { 2, 5 }, { 2, 4 }, { 2, 4 }, { 1, 3 },
               { 1, 3 }, { 2, 4 }, { 2, 4 }, { 3, 6 }, { 2, 5 } ],
             [ { 2, 5 }, { 3, 6 }, { 2, 4 }, { 2, 5 }, { 2, 5 },
               { 2, 6 }, { 2, 6 }, { 1, 3 }, { 2, 4 }, { 1, 3 },
               { 2, 4 }, { 1, 3 }, { 1, 3 }, { 2, 6 }, { 2, 5 },
               { 1, 3 }, { 2, 4 }, { 1, 3 }, { 2, 4 }, { 2, 5 },
               { 2, 4 }, { 2, 4 }, { 2, 6 }, { 1, 3 }, { 2, 4 } ],
             [ { 2, 5 }, { 1, 4 }, { 3, 6 }, { 2, 6 }, { 1, 3 },
               { 1, 4 }, { 1, 3 }, { 2, 5 }, { 2, 6 }, { 1, 3 },
               { 1, 3 }, { 3, 6 }, { 2, 4 }, { 1, 4 }, { 1, 4 },
               { 1, 3 }, { 1, 3 }, { 1, 4 }, { 1, 3 }, { 2, 5 },
               { 3, 6 }, { 1, 3 }, { 1, 3 }, { 3, 6 }, { 1, 4 } ] ]

TRAINING_COVERAGE = [ { 2, 5 }, { 2, 4 }, { 1 , 3 }, { 1, 3 }, { 1, 3 } ]

SIGNALS = [ [ { 3, 4 }, { 3, 6 }, { 3, 6 }, { 3, 5, 6 }, { 2, 6 },
              { 3, 6 }, { 2, 4}, { 2, 6 }, { 3, 6 }, { 1, 3, 4 },
              { 3, 4 }, { 1, 3 }, { 4, 6 }, { 5}, { 3, 6 },
              { 2, 4 }, { 5 }, { 3 }, { 6 }, { 2, 4 },
              { 2, 4 }, set(), {2, 4, 5 }, { 3 }, { 5, 6 } ],
            [ { 3, 4 }, { 2, 4 }, { 2, 4, 5 }, { 4, 5 }, { 4, 5 },
              { 1, 3, 6 }, { 2 }, { 3 }, { 5 }, set(),
              { 2, 5 }, { 2, 5 }, {3, 4 }, { 2, 5 }, { 2, 4, 5 },
              { 4, 5 }, { 3, 4 }, { 3, 5, 6 }, { 1, 5}, { 2, 5 },
              { 2 }, { 1, 5 }, { 1, 3, 5 }, { 4 }, { 1, 3, 4, 6 } ],
            [ { 1, 3, 6 }, { 2, 4 }, set(), { 1, 3, 4 }, { 3 },
              { 1, 4, 5 }, { 5 }, { 2, 4}, { 1, 3, 5 }, set(),
              { 1, 3, 5 }, { 2 }, { 2, 4, 5 }, { 5 }, { 3, 4 },
              { 2, 4, 5, 6 }, { 1, 3, 5 }, { 2, 4, 6 }, { 1, 3 }, { 1, 4 },
              { 5 }, {3 }, set(), { 2, 5, 6 }, { 1, 3, 5, 6 } ],
            [ { 6 }, { 3 }, { 2, 4 }, { 4, 5}, { 6 },
              { 3, 5 }, { 4 }, { 3, 4, 6 }, { 1, 3, 4, 5 }, { 2, 4, 6 },
              {4, 5 }, { 2, 5 }, { 1, 5, 6 }, { 2, 3, 6 }, { 2, 3 },
              { 5 }, { 2, 4, 5, 6 }, { 2, 3, 5, 6 }, { 2, 4, 5 }, { 1, 3, 4, 6 },
              { 2, 4, 5 }, { 4, 5 }, { 4 }, { 4, 5 }, { 3, 5, 6 } ] ]

TRAINING_SIGNALS = [ { 3, 4 }, {1, 3, 6 }, { 5 }, { 2, 5 }, {2, 4, 5} ]

for clist, slist in zip(COVERAGE, SIGNALS):
    for c, s in zip(clist, slist):
        s.update(c)

TARGET_COUNT = len(TARGETS[0])
BLOCKS = len(TARGETS)
TRIALS = len(COVERAGE[0])

selection_agent = Agent(default_utility=None,mismatchPenalty = 2.5)
attack_agent = Agent(default_utility=None)
selection_agent = Agent(mismatchPenalty = 2.5) #define the agents with default parameters
selection_agent.similarity([0,1], lambda x, y: 1 - abs(x - y) / 10)
selection_agent.similarity([2], lambda x, y: 1 - abs(x -y))

attacks = [0] * BLOCKS * TRIALS

runs = 1000 # number of runs (participants)
data = []

for p in range(runs):
  total = 0
  selection_agent.reset()
  selection_agent.similarity([0,1], lambda x, y: 1 - abs(x - y) / 10)
  selection_agent.similarity([2], lambda x, y: 1 - abs(x -y))
  
  attack_agent.reset()
  dup = random.randrange(5)
  for i in range(5):
      n = random.randrange(TARGET_COUNT)
      x = TARGETS[1][n]
      covered = n + 1 in TRAINING_COVERAGE[i]
      selection_agent.prepopulate((i + 1,
                                                (x["payment"],
                                                x["penalty"],
                                                x["monitored_probability"])),
                                                x["penalty" if covered else "payment"])
      attack_agent.prepopulate((True, n + 1 in TRAINING_SIGNALS[i]),x["penalty" if covered else "payment"])
      if i == dup:
          # x = TARGETS[1][5]
          selection_agent.prepopulate((6,
                                      (x["payment"],
                                      x["penalty"],
                                      x["monitored_probability"])),
                                      x["penalty" if covered else "payment"])
  attack_agent.prepopulate((False,False),0)
  attack_agent.prepopulate((False,True),0)
  attack_agent.prepopulate((True,False),10)
  attack_agent.prepopulate((False,True),5)
  
  for b in range(BLOCKS):
      sds = [ (i + 1,
                                        (x["payment"],
                                        x["penalty"],
                                        x["monitored_probability"]))
                        for x, i in zip(TARGETS[b], range(TARGET_COUNT)) ]

      for t in range(TRIALS):
          selected = selection_agent.choose(sds)[0]
          warned = selected in SIGNALS[b][t]
          pmnt = TARGETS[b][selected - 1]["payment"]
          attack = attack_agent.choose([(True, warned),
                                        (False, warned)])[0]
          covered = selected in COVERAGE[b][t]
          if not attack:
              payoff = 0
          else:
              payoff = TARGETS[b][selected - 1]["penalty" if covered else "payment"]
              attacks[b * 25 + t] += 1
          total += payoff
          attack_agent.respond(payoff)
          selection_agent.respond(payoff)
          data.append([p+1, b+1,t+1,b*25+t+1, selected, int(warned), int(covered),int(attack),payoff, total])

Plot the result

import pandas as pd
import matplotlib.pyplot as plt

df = pd.DataFrame(data)

plt.plot(range(1,101), df.groupby(3).mean()[8], 'o-', color='darkgreen', markersize=2, linewidth =2, linestyle='--',label='SpeedyIBL')
plt.xlabel('Round')
plt.ylabel('Average Reward')
plt.grid(True)
plt.legend()
<matplotlib.legend.Legend at 0x7efc84231690>

png

Build an IBL Agent with an Equal Delay Feedback Mechanism

This model will be employed to perform the tasks following

from speedyibl import Agent
from collections import deque
class AgentIBL(Agent):

	# """ Agent """
	def __init__(self, outputs, default_utility = 0.1, Hash = True, delay_feedback = True):
		super(AgentIBL, self).__init__(default_utility=default_utility)
		# '''
		# :param dict config: Dictionary containing hyperparameters
		# '''
		self.outputs = outputs
		self.options = {}
		self.episode_history = []
		self.hash = Hash
		self.delay_feedback = delay_feedback

	def generate_options(self,s_hash):
		self.options[s_hash] = [(s_hash, a) for a in range(self.outputs)]
	
	def move(self, o, explore=True):
		# '''
		# Returns an action from the IBL agent instance.
		# :param tensor: State/Observation
		# '''
		if self.hash:
			s_hash = hash(o.tobytes())
		else:
			s_hash = o
		if s_hash not in self.options:
			self.generate_options(s_hash)
		options = self.options[s_hash]
		choice = self.choose(options)
		self.last_action = choice[1]

		self.current = s_hash

		return self.last_action



	def feedback(self, reward):

		self.respond(reward)

		#episode history
		if self.delay_feedback and (len(self.episode_history) == 0 or self.current != self.episode_history[-1][0]):
			self.episode_history.append((self.current,self.last_action,reward,self.t))
			

	def delayfeedback(self, reward):		
		self.equal_delay_feedback(reward, self.episode_history)

Illustration of IBL for Cooperative Navigation

Task description

In this task, three agents must cooperate through physical actions to reach a set of three landmarks (3 green landmarks). The agents can observe the relative positions of other agents and landmarks, and are collectively rewarded based on the number of the landmarks that they cover. For instance, if all the agents cover only one landmark, they receive one point. By contrast, if they all can cover the three landmarks, they got the maximum of three points. Simply put, the agents want to cover all of the landmarks, so they need to learn to coordinate the landmark they must cover.

Install and call the cooperative navigation environment

!pip install -U vitenv
from vitenv import Environment
env = Environment('NAVIGATION_V1')
Collecting vitenv
  Downloading vitenv-0.0.4-py3-none-any.whl (27 kB)
Requirement already satisfied: numpy in /usr/local/lib/python3.7/dist-packages (from vitenv) (1.19.5)
Requirement already satisfied: opencv-python in /usr/local/lib/python3.7/dist-packages (from vitenv) (4.1.2.30)
Installing collected packages: vitenv
Successfully installed vitenv-0.0.4

Run experiments

runs = 100
episodes = 100
steps = 2500
number_agents = 3

data = []

from copy import deepcopy

for run in range(runs):

  agents = []
  for i in range(number_agents): 
      agents.append(AgentIBL(env.out,default_utility=2.5)) # Init agent instances

  for i in range(episodes):
      
    # Run episode
    observations = env.reset() # Get first observations
    episode_reward = 0

    for j in range(steps):
      if j == steps-1:
          env.env.t_episode = True
      #######################################
      arriveds = deepcopy(env.env.arriveds)
      actions = [4,4,4]
      for a in range(number_agents):
          if not arriveds[a]:
              actions[a] = agents[a].move(observations[a])

      observations, rewards, t = env.step(actions)

      if j == steps-1:
          t = True

      for a, r in zip(range(number_agents),rewards):
          if not arriveds[a]: 
              agents[a].feedback(r)  
      if t:         
          for agent, r in zip(agents, rewards):
            if r > 0:
              agent.delayfeedback(r) 
            agent.episode_history = []


      episode_reward += rewards[0]
      if t: 
        break # If t then terminal state has been reached
    data.append([run, i, j, episode_reward])
  # print('Finished ', run, '-th run')

Plot results

import pandas as pd
import matplotlib.pyplot as plt

df = pd.DataFrame(data)

plt.plot(range(1,101), df.groupby(1).mean()[3], 'o-', color='darkgreen', markersize=2, linewidth =2, linestyle='--',label='SpeedyIBL')
plt.xlabel('Episode')
plt.ylabel('Average Reward')
plt.title('Cooperative navigation')
plt.grid(True)
plt.legend()
<matplotlib.legend.Legend at 0x7f37d3ec1a50>

png

Illustration of IBL for Minimap

Task description

The task is inspired by a search and rescue scenario, which involves an agent being placed in a building with multiple rooms and tasked with rescuing victims. Victims have been scattered across the building and their injuries have different degrees of severity with some needing more urgent care than others. In particular, there are 34 victims grouped into two categories (24 green victims and 10 yellow victims). There are many obstacles (walls) placed in the path forcing the agent to look for alternate routes. The agent's goal is to rescue as many of these victims as possible. The task is simulated as a $93 \times 50$ grid of cells which represents one floor of this building. Each cell is either empty, an obstacle or a victim. The agent can choose to move left, right, up or down, and only move one cell at a time.

Install and call the MINIMAP environment

!pip install -U vitenv
from vitenv import Environment
env = Environment('MINIMAP_V1')
Requirement already satisfied: vitenv in /usr/local/lib/python3.7/dist-packages (0.0.1)
Requirement already satisfied: numpy in /usr/local/lib/python3.7/dist-packages (from vitenv) (1.19.5)
Requirement already satisfied: opencv-python in /usr/local/lib/python3.7/dist-packages (from vitenv) (4.1.2.30)

Run experiments

runs = 5
episodes = 100
steps = 2500
number_agents = 3

data = []

for run in range(runs):

  
  agent = AgentIBL(env.out,default_utility=0.1) # Init agent instances

  for i in range(episodes):
      
    # Run episode
    observation = env.reset() # Get first observations
    episode_reward = 0

    for j in range(steps):
      #######################################
      action = agent.move(observation)

      observation, reward, t = env.step(action)

      if j == steps-1:
          t = True

      agent.feedback(reward)
      if reward > 0:
          agent.delayfeedback(reward)
          episode_reward += reward 
          agent.episode_history = []

      if t: 
        agent.episode_history = [] 
        break # If t then terminal state has been reached
    data.append([run, i, j, episode_reward])
  print('Finished ', run, '-th run')
Finished  0 -th run
Finished  1 -th run
Finished  2 -th run
Finished  3 -th run
Finished  4 -th run

Plot the result

import pandas as pd
import matplotlib.pyplot as plt

df = pd.DataFrame(data)

plt.plot(range(1,101), df.groupby(1).mean()[3], 'o-', color='darkgreen', markersize=2, linewidth =2, linestyle='--',label='SpeedyIBL')
plt.xlabel('Episode')
plt.ylabel('Average Reward')
plt.title('MINIMAP V1')
plt.grid(True)
plt.legend()
<matplotlib.legend.Legend at 0x7f37d44ded90>

png

Illustration of IBL for Firemen Task

Task description

The task replicates the coordination in firefighting service wherein agents need to pick up matching items for extinguishing fire. The task is simulated in a gridworld of size $11\times 14$. Two agents located within the gridworld are tasked with locating an equipment pickup area and choosing one of the firefight items. Afterwards, they need to navigate and find the location of fire (F) to extinguish it. The task is fully cooperative as both agents are required to extinguish one fire.

Install and call the FIREMAN environment

!pip install -U vitenv
from vitenv import Environment
env = Environment('FIREMEN_V1')
Requirement already satisfied: vitenv in /usr/local/lib/python3.7/dist-packages (0.0.4)
Requirement already satisfied: opencv-python in /usr/local/lib/python3.7/dist-packages (from vitenv) (4.1.2.30)
Requirement already satisfied: numpy in /usr/local/lib/python3.7/dist-packages (from vitenv) (1.19.5)

Run experiments

runs = 10
episodes = 100
steps = 2500
number_agents = 2

data = []

from copy import deepcopy

for run in range(runs):

  agents = []
  for i in range(number_agents): 
      agents.append(AgentIBL(env.out,default_utility=13)) # Init agent instances

  for i in range(episodes):
      
    # Run episode
    observations = env.reset() # Get first observations
    episode_reward = 0

    for j in range(steps):
      #######################################
      actions = []
      for agent, o in zip(agents,observations):
          actions.append(agent.move(o))
      observations, rewards, t = env.step(actions)

      for agent, r in zip(agents, rewards):
        agent.feedback(r)  
      if t:         
          for agent, r in zip(agents, rewards):
            agent.delayfeedback(r) 
            agent.episode_history = []

      if j == steps-1:
          t = True

      episode_reward += rewards[0]
      if t: 
        for agent in agents:
          agent.episode_history = []
        break # If t then terminal state has been reached
    data.append([run, i, j, episode_reward])
  print('Finished ', run, '-th run')
Finished  0 -th run
Finished  1 -th run
Finished  2 -th run
Finished  3 -th run
Finished  4 -th run
Finished  5 -th run
Finished  6 -th run
Finished  7 -th run
Finished  8 -th run
Finished  9 -th run

Plot the result

import pandas as pd
import matplotlib.pyplot as plt

df = pd.DataFrame(data)

plt.plot(range(1,101), df.groupby(1).mean()[3], 'o-', color='darkgreen', markersize=2, linewidth =2, linestyle='--',label='SpeedyIBL')
plt.xlabel('Episode')
plt.ylabel('Average Reward')
plt.title('FIREMEN TASK')
plt.grid(True)
plt.legend()
<matplotlib.legend.Legend at 0x7f53fd40df10>

png

Illustration of IBL for Tasks from GymAI

Install and call the CartPole Task

%pip install gym
import gym 
env = gym.make('CartPole-v1')
Requirement already satisfied: gym in /usr/local/lib/python3.7/dist-packages (0.17.3)
Requirement already satisfied: pyglet<=1.5.0,>=1.4.0 in /usr/local/lib/python3.7/dist-packages (from gym) (1.5.0)
Requirement already satisfied: scipy in /usr/local/lib/python3.7/dist-packages (from gym) (1.4.1)
Requirement already satisfied: cloudpickle<1.7.0,>=1.2.0 in /usr/local/lib/python3.7/dist-packages (from gym) (1.3.0)
Requirement already satisfied: numpy>=1.10.4 in /usr/local/lib/python3.7/dist-packages (from gym) (1.19.5)
Requirement already satisfied: future in /usr/local/lib/python3.7/dist-packages (from pyglet<=1.5.0,>=1.4.0->gym) (0.16.0)

Run experiments

runs = 100
episodes = 100
steps = 2500
number_agents = 1

data = []

for run in range(runs):

  
  agent = AgentIBL(env.action_space.n,default_utility=11) # Init agent instances

  for i in range(episodes):
      
    # Run episode
    observation = env.reset() # Get first observations
    episode_reward = 0

    for j in range(steps):
      #######################################
      action = agent.move(observation)

      observation, reward, t, info = env.step(action)

      if j == steps-1:
          t = True

      agent.feedback(reward)
      if reward > 0:
          agent.delayfeedback(reward)
          episode_reward += reward 
          agent.episode_history = []

      if t: 
        agent.episode_history = [] 
        break # If t then terminal state has been reached
    data.append([run, i, j, episode_reward])
  # print('Finished ', run, '-th run')

Plot the result

import pandas as pd
import matplotlib.pyplot as plt

df = pd.DataFrame(data)

plt.plot(range(1,episodes+1), df.groupby(1).mean()[3], 'o-', color='darkgreen', markersize=2, linewidth =2, linestyle='--',label='SpeedyIBL')
plt.xlabel('Episode')
plt.ylabel('Average Reward')
plt.title('CartPole Game')
plt.grid(True)
plt.legend()
<matplotlib.legend.Legend at 0x7f810f1ee590>

png

N-Person-Check-Checker-Splitter - A calculator app use to divide checks

N-Person-Check-Checker-Splitter This is my from-scratch programmed calculator ap

2 Feb 15, 2022
Repo for the paper "DiLBERT: Cheap Embeddings for Disease Related Medical NLP"

DiLBERT Repo for the paper "DiLBERT: Cheap Embeddings for Disease Related Medical NLP" Pretrained Model The pretrained model presented in the paper is

Kevin Roitero 2 Dec 15, 2022
MiniHack the Planet: A Sandbox for Open-Ended Reinforcement Learning Research

MiniHack the Planet: A Sandbox for Open-Ended Reinforcement Learning Research

Facebook Research 338 Dec 29, 2022
Code for the paper Hybrid Spectrogram and Waveform Source Separation

Demucs Music Source Separation This is the 3rd release of Demucs (v3), featuring hybrid source separation. For the waveform only Demucs (v2): Go this

Meta Research 4.8k Jan 04, 2023
Implementation for Learning to Track with Object Permanence

Learning to Track with Object Permanence A video-based MOT approach capable of tracking through full occlusions: Learning to Track with Object Permane

Toyota Research Institute - Machine Learning 91 Jan 03, 2023
Python script that analyses the given datasets and comes up with the best polynomial regression representation with the smallest polynomial degree possible

Python script that analyses the given datasets and comes up with the best polynomial regression representation with the smallest polynomial degree possible, to be the most reliable with the least com

Nikolas B Virionis 2 Aug 01, 2022
An extremely simple, intuitive, hardware-friendly, and well-performing network structure for LiDAR semantic segmentation on 2D range image. IROS21

FIDNet_SemanticKITTI Motivation Implementing complicated network modules with only one or two points improvement on hardware is tedious. So here we pr

YimingZhao 54 Dec 12, 2022
TCNN Temporal convolutional neural network for real-time speech enhancement in the time domain

TCNN Pandey A, Wang D L. TCNN: Temporal convolutional neural network for real-time speech enhancement in the time domain[C]//ICASSP 2019-2019 IEEE Int

凌逆战 16 Dec 30, 2022
FedTorch is an open-source Python package for distributed and federated training of machine learning models using PyTorch distributed API

FedTorch is a generic repository for benchmarking different federated and distributed learning algorithms using PyTorch Distributed API.

Machine Learning and Optimization Lab @PennState 136 Dec 23, 2022
Out-of-boundary View Synthesis towards Full-frame Video Stabilization

Out-of-boundary View Synthesis towards Full-frame Video Stabilization Introduction | Update | Results Demo | Introduction This repository contains the

25 Oct 10, 2022
A PyTorch implementation of Multi-digit Number Recognition from Street View Imagery using Deep Convolutional Neural Networks

SVHNClassifier-PyTorch A PyTorch implementation of Multi-digit Number Recognition from Street View Imagery using Deep Convolutional Neural Networks If

Potter Hsu 182 Jan 03, 2023
Vehicle Detection Using Deep Learning and YOLO Algorithm

VehicleDetection Vehicle Detection Using Deep Learning and YOLO Algorithm Dataset take or find vehicle images for create a special dataset for fine-tu

Maryam Boneh 96 Jan 05, 2023
Final term project for Bayesian Machine Learning Lecture (XAI-623)

Mixquality_AL Final Term Project For Bayesian Machine Learning Lecture (XAI-623) Youtube Link The presentation is given in YoutubeLink Problem Formula

JeongEun Park 3 Jan 18, 2022
A PyTorch implementation of Learning to learn by gradient descent by gradient descent

Intro PyTorch implementation of Learning to learn by gradient descent by gradient descent. Run python main.py TODO Initial implementation Toy data LST

Ilya Kostrikov 300 Dec 11, 2022
Automatic Image Background Subtraction

Automatic Image Background Subtraction This repo contains set of scripts for automatic one-shot image background subtraction task using the following

Oleg Sémery 6 Dec 05, 2022
Explaining Deep Neural Networks - A comparison of different CAM methods based on an insect data set

Explaining Deep Neural Networks - A comparison of different CAM methods based on an insect data set This is the repository for the Deep Learning proje

Robert Krug 3 Feb 06, 2022
Uncertainty Estimation via Response Scaling for Pseudo-mask Noise Mitigation in Weakly-supervised Semantic Segmentation

Uncertainty Estimation via Response Scaling for Pseudo-mask Noise Mitigation in Weakly-supervised Semantic Segmentation Introduction This is a PyTorch

XMed-Lab 30 Sep 23, 2022
Traductor de lengua de señas al español basado en Python con Opencv y MedaiPipe

Traductor de señas Traductor de lengua de señas al español basado en Python con Opencv y MedaiPipe Requerimientos 🔧 Python 3.8 o inferior para evitar

Jahaziel Hernandez Hoyos 3 Nov 12, 2022
This is the official implementation of Elaborative Rehearsal for Zero-shot Action Recognition (ICCV2021)

Elaborative Rehearsal for Zero-shot Action Recognition This is an official implementation of: Shizhe Chen and Dong Huang, Elaborative Rehearsal for Ze

DeLightCMU 26 Sep 24, 2022
generate-2D-quadrilateral-mesh-with-neural-networks-and-tree-search

generate-2D-quadrilateral-mesh-with-neural-networks-and-tree-search This repository contains single-threaded TreeMesh code. I'm Hua Tong, a senior stu

Hua Tong 18 Sep 21, 2022