Speedy Implementation of Instance-based Learning (IBL) agents in Python

Overview

A Python library to create single or multi Instance-based Learning (IBL) agents that are built based on Instance Based Learning Theory (IBLT) 1

References

[1] Cleotilde Gonzalez, Javier F. Lerch and Christian Lebiere (2003), Instance-based learning in dynamic decision making, Cognitive Science, 27, 591-635. DOI: 10.1016/S0364-0213(03)00031-4.

[2] Thuy Ngoc Nguyen, Duy Nhat Phan, Cleotilde Gonzalez (2021), SpeedyIBL: A Solution to the Curse of Exponential Growth in Instance-Based Learning Models of Decisions from Experience

Installation of speedy IBL

%pip install -U speedyibl
Requirement already satisfied: speedyibl in /usr/local/lib/python3.7/dist-packages (0.0.9)
Requirement already satisfied: wheel in /usr/local/lib/python3.7/dist-packages (from speedyibl) (0.37.0)
Requirement already satisfied: tabulate in /usr/local/lib/python3.7/dist-packages (from speedyibl) (0.8.9)
Requirement already satisfied: numpy in /usr/local/lib/python3.7/dist-packages (from speedyibl) (1.19.5)
Requirement already satisfied: setuptools>=42 in /usr/local/lib/python3.7/dist-packages (from speedyibl) (57.4.0)

Import libraries

from speedyibl import Agent
import random 
import numpy as np
import matplotlib.pyplot as plt

Illustration of IBL for Binary Choice Task

Task description

In each episode, the agent is required to choose one of two options: Safe or Risky. One option is Safe and it yields a fixed medium outcome (i.e., 3) every time it is chosen. The other option is Risky, and it yields a high outcome (4) with some probability 0.8, and a low outcome (0) with the complementary probability 0.2.

agent = Agent(default_utility=4.4) #define the agent with default_utility = 4.4, noise = 0.25 decay = 0.5
options = ['safe','risky'] # set of options
runs = 100 # number of runs (participants)
episodes = 100 # number of episodes (trials, rounds)
average_pmax = [] # to store average of performance (proportion of maximum reward expectation choice)

for r in range(runs):
  pmax = []
  agent.reset() #clear the memory for a new run
  for e in range(episodes):     

    choice = agent.choose(options)
    if choice == 'safe':
      agent.respond(3)
    elif random.random() <= 0.8:
      agent.respond(4)
    else:
      agent.respond(0)
    pmax.append(choice == 'risky')
  average_pmax.append(pmax)

Plot the result

plt.plot(range(episodes), np.mean(np.asarray(average_pmax),axis=0), 'o-', color='darkgreen', markersize=2, linestyle='--', label='speedyIBL')

plt.xlabel('Episode')
plt.ylabel('PMAX')
plt.title('Binary choice')
plt.grid(True)
plt.show()

png

Illustration of IBL for Insider Attack Game

Task description

In this game, players take the role of the attacker and their goal is to score points by “hacking” computers to steal proprietary data.

TARGETS = [ [ { "payment": 2, "penalty":  -1, "monitored_probability": 0.22 },
              { "payment": 8, "penalty":  -5, "monitored_probability": 0.51 },
              { "payment": 9, "penalty":  -9, "monitored_probability": 0.42 },
              { "payment": 9, "penalty": -10, "monitored_probability": 0.40 },
              { "payment": 2, "penalty":  -6, "monitored_probability": 0.08 },
              { "payment": 5, "penalty":  -5, "monitored_probability": 0.36 } ],
            [ { "payment": 5, "penalty":  -3, "monitored_probability": 0.41 },
              { "payment": 8, "penalty":  -5, "monitored_probability": 0.48 },
              { "payment": 7, "penalty":  -6, "monitored_probability": 0.41 },
              { "payment": 8, "penalty":  -9, "monitored_probability": 0.37 },
              { "payment": 5, "penalty":  -7, "monitored_probability": 0.27 },
              { "payment": 2, "penalty":  -4, "monitored_probability": 0.05 } ],
            [ { "payment": 3, "penalty":  -3, "monitored_probability": 0.30 },
              { "payment": 9, "penalty":  -4, "monitored_probability": 0.60 },
              { "payment": 6, "penalty":  -6, "monitored_probability": 0.40 },
              { "payment": 5, "penalty":  -8, "monitored_probability": 0.29 },
              { "payment": 3, "penalty":  -6, "monitored_probability": 0.20 },
              { "payment": 2, "penalty":  -2, "monitored_probability": 0.20 } ],
            [ { "payment": 4, "penalty":  -3, "monitored_probability": 0.37 },
              { "payment": 6, "penalty":  -3, "monitored_probability": 0.51 },
              { "payment": 7, "penalty":  -7, "monitored_probability": 0.40 },
              { "payment": 5, "penalty": -10, "monitored_probability": 0.24 },
              { "payment": 5, "penalty":  -9, "monitored_probability": 0.26 },
              { "payment": 3, "penalty":  -4, "monitored_probability": 0.23 } ] ]

COVERAGE = [ [ { 2, 6 }, { 2, 4 }, { 2, 5 }, { 2, 4 }, { 1, 3 },
               { 2, 4 }, { 1, 3 }, { 1, 3 }, { 2, 4 }, { 2, 6 },
               { 2, 6 }, { 2, 4 }, { 1, 3 }, { 2, 4 }, { 2, 4 },
               { 1, 3 }, { 3, 6 }, { 2, 4 }, { 2, 4 }, { 3, 6 },
               { 1, 3 }, { 2, 4 }, { 3, 6 }, { 2, 4 }, { 1, 3 } ],
             [ { 2, 5 }, { 1, 3 }, { 1, 3 }, { 3, 6 }, { 1, 3 },
               { 2, 4 }, { 1, 3 }, { 2, 4 }, { 1, 3 }, { 1, 4 },
               { 1, 3 }, { 1, 3 }, { 2, 5 }, { 1, 3 }, { 1, 3 },
               { 1, 3 }, { 2, 5 }, { 2, 4 }, { 2, 4 }, { 1, 3 },
               { 1, 3 }, { 2, 4 }, { 2, 4 }, { 3, 6 }, { 2, 5 } ],
             [ { 2, 5 }, { 3, 6 }, { 2, 4 }, { 2, 5 }, { 2, 5 },
               { 2, 6 }, { 2, 6 }, { 1, 3 }, { 2, 4 }, { 1, 3 },
               { 2, 4 }, { 1, 3 }, { 1, 3 }, { 2, 6 }, { 2, 5 },
               { 1, 3 }, { 2, 4 }, { 1, 3 }, { 2, 4 }, { 2, 5 },
               { 2, 4 }, { 2, 4 }, { 2, 6 }, { 1, 3 }, { 2, 4 } ],
             [ { 2, 5 }, { 1, 4 }, { 3, 6 }, { 2, 6 }, { 1, 3 },
               { 1, 4 }, { 1, 3 }, { 2, 5 }, { 2, 6 }, { 1, 3 },
               { 1, 3 }, { 3, 6 }, { 2, 4 }, { 1, 4 }, { 1, 4 },
               { 1, 3 }, { 1, 3 }, { 1, 4 }, { 1, 3 }, { 2, 5 },
               { 3, 6 }, { 1, 3 }, { 1, 3 }, { 3, 6 }, { 1, 4 } ] ]

TRAINING_COVERAGE = [ { 2, 5 }, { 2, 4 }, { 1 , 3 }, { 1, 3 }, { 1, 3 } ]

SIGNALS = [ [ { 3, 4 }, { 3, 6 }, { 3, 6 }, { 3, 5, 6 }, { 2, 6 },
              { 3, 6 }, { 2, 4}, { 2, 6 }, { 3, 6 }, { 1, 3, 4 },
              { 3, 4 }, { 1, 3 }, { 4, 6 }, { 5}, { 3, 6 },
              { 2, 4 }, { 5 }, { 3 }, { 6 }, { 2, 4 },
              { 2, 4 }, set(), {2, 4, 5 }, { 3 }, { 5, 6 } ],
            [ { 3, 4 }, { 2, 4 }, { 2, 4, 5 }, { 4, 5 }, { 4, 5 },
              { 1, 3, 6 }, { 2 }, { 3 }, { 5 }, set(),
              { 2, 5 }, { 2, 5 }, {3, 4 }, { 2, 5 }, { 2, 4, 5 },
              { 4, 5 }, { 3, 4 }, { 3, 5, 6 }, { 1, 5}, { 2, 5 },
              { 2 }, { 1, 5 }, { 1, 3, 5 }, { 4 }, { 1, 3, 4, 6 } ],
            [ { 1, 3, 6 }, { 2, 4 }, set(), { 1, 3, 4 }, { 3 },
              { 1, 4, 5 }, { 5 }, { 2, 4}, { 1, 3, 5 }, set(),
              { 1, 3, 5 }, { 2 }, { 2, 4, 5 }, { 5 }, { 3, 4 },
              { 2, 4, 5, 6 }, { 1, 3, 5 }, { 2, 4, 6 }, { 1, 3 }, { 1, 4 },
              { 5 }, {3 }, set(), { 2, 5, 6 }, { 1, 3, 5, 6 } ],
            [ { 6 }, { 3 }, { 2, 4 }, { 4, 5}, { 6 },
              { 3, 5 }, { 4 }, { 3, 4, 6 }, { 1, 3, 4, 5 }, { 2, 4, 6 },
              {4, 5 }, { 2, 5 }, { 1, 5, 6 }, { 2, 3, 6 }, { 2, 3 },
              { 5 }, { 2, 4, 5, 6 }, { 2, 3, 5, 6 }, { 2, 4, 5 }, { 1, 3, 4, 6 },
              { 2, 4, 5 }, { 4, 5 }, { 4 }, { 4, 5 }, { 3, 5, 6 } ] ]

TRAINING_SIGNALS = [ { 3, 4 }, {1, 3, 6 }, { 5 }, { 2, 5 }, {2, 4, 5} ]

for clist, slist in zip(COVERAGE, SIGNALS):
    for c, s in zip(clist, slist):
        s.update(c)

TARGET_COUNT = len(TARGETS[0])
BLOCKS = len(TARGETS)
TRIALS = len(COVERAGE[0])

selection_agent = Agent(default_utility=None,mismatchPenalty = 2.5)
attack_agent = Agent(default_utility=None)
selection_agent = Agent(mismatchPenalty = 2.5) #define the agents with default parameters
selection_agent.similarity([0,1], lambda x, y: 1 - abs(x - y) / 10)
selection_agent.similarity([2], lambda x, y: 1 - abs(x -y))

attacks = [0] * BLOCKS * TRIALS

runs = 1000 # number of runs (participants)
data = []

for p in range(runs):
  total = 0
  selection_agent.reset()
  selection_agent.similarity([0,1], lambda x, y: 1 - abs(x - y) / 10)
  selection_agent.similarity([2], lambda x, y: 1 - abs(x -y))
  
  attack_agent.reset()
  dup = random.randrange(5)
  for i in range(5):
      n = random.randrange(TARGET_COUNT)
      x = TARGETS[1][n]
      covered = n + 1 in TRAINING_COVERAGE[i]
      selection_agent.prepopulate((i + 1,
                                                (x["payment"],
                                                x["penalty"],
                                                x["monitored_probability"])),
                                                x["penalty" if covered else "payment"])
      attack_agent.prepopulate((True, n + 1 in TRAINING_SIGNALS[i]),x["penalty" if covered else "payment"])
      if i == dup:
          # x = TARGETS[1][5]
          selection_agent.prepopulate((6,
                                      (x["payment"],
                                      x["penalty"],
                                      x["monitored_probability"])),
                                      x["penalty" if covered else "payment"])
  attack_agent.prepopulate((False,False),0)
  attack_agent.prepopulate((False,True),0)
  attack_agent.prepopulate((True,False),10)
  attack_agent.prepopulate((False,True),5)
  
  for b in range(BLOCKS):
      sds = [ (i + 1,
                                        (x["payment"],
                                        x["penalty"],
                                        x["monitored_probability"]))
                        for x, i in zip(TARGETS[b], range(TARGET_COUNT)) ]

      for t in range(TRIALS):
          selected = selection_agent.choose(sds)[0]
          warned = selected in SIGNALS[b][t]
          pmnt = TARGETS[b][selected - 1]["payment"]
          attack = attack_agent.choose([(True, warned),
                                        (False, warned)])[0]
          covered = selected in COVERAGE[b][t]
          if not attack:
              payoff = 0
          else:
              payoff = TARGETS[b][selected - 1]["penalty" if covered else "payment"]
              attacks[b * 25 + t] += 1
          total += payoff
          attack_agent.respond(payoff)
          selection_agent.respond(payoff)
          data.append([p+1, b+1,t+1,b*25+t+1, selected, int(warned), int(covered),int(attack),payoff, total])

Plot the result

import pandas as pd
import matplotlib.pyplot as plt

df = pd.DataFrame(data)

plt.plot(range(1,101), df.groupby(3).mean()[8], 'o-', color='darkgreen', markersize=2, linewidth =2, linestyle='--',label='SpeedyIBL')
plt.xlabel('Round')
plt.ylabel('Average Reward')
plt.grid(True)
plt.legend()
<matplotlib.legend.Legend at 0x7efc84231690>

png

Build an IBL Agent with an Equal Delay Feedback Mechanism

This model will be employed to perform the tasks following

from speedyibl import Agent
from collections import deque
class AgentIBL(Agent):

	# """ Agent """
	def __init__(self, outputs, default_utility = 0.1, Hash = True, delay_feedback = True):
		super(AgentIBL, self).__init__(default_utility=default_utility)
		# '''
		# :param dict config: Dictionary containing hyperparameters
		# '''
		self.outputs = outputs
		self.options = {}
		self.episode_history = []
		self.hash = Hash
		self.delay_feedback = delay_feedback

	def generate_options(self,s_hash):
		self.options[s_hash] = [(s_hash, a) for a in range(self.outputs)]
	
	def move(self, o, explore=True):
		# '''
		# Returns an action from the IBL agent instance.
		# :param tensor: State/Observation
		# '''
		if self.hash:
			s_hash = hash(o.tobytes())
		else:
			s_hash = o
		if s_hash not in self.options:
			self.generate_options(s_hash)
		options = self.options[s_hash]
		choice = self.choose(options)
		self.last_action = choice[1]

		self.current = s_hash

		return self.last_action



	def feedback(self, reward):

		self.respond(reward)

		#episode history
		if self.delay_feedback and (len(self.episode_history) == 0 or self.current != self.episode_history[-1][0]):
			self.episode_history.append((self.current,self.last_action,reward,self.t))
			

	def delayfeedback(self, reward):		
		self.equal_delay_feedback(reward, self.episode_history)

Illustration of IBL for Cooperative Navigation

Task description

In this task, three agents must cooperate through physical actions to reach a set of three landmarks (3 green landmarks). The agents can observe the relative positions of other agents and landmarks, and are collectively rewarded based on the number of the landmarks that they cover. For instance, if all the agents cover only one landmark, they receive one point. By contrast, if they all can cover the three landmarks, they got the maximum of three points. Simply put, the agents want to cover all of the landmarks, so they need to learn to coordinate the landmark they must cover.

Install and call the cooperative navigation environment

!pip install -U vitenv
from vitenv import Environment
env = Environment('NAVIGATION_V1')
Collecting vitenv
  Downloading vitenv-0.0.4-py3-none-any.whl (27 kB)
Requirement already satisfied: numpy in /usr/local/lib/python3.7/dist-packages (from vitenv) (1.19.5)
Requirement already satisfied: opencv-python in /usr/local/lib/python3.7/dist-packages (from vitenv) (4.1.2.30)
Installing collected packages: vitenv
Successfully installed vitenv-0.0.4

Run experiments

runs = 100
episodes = 100
steps = 2500
number_agents = 3

data = []

from copy import deepcopy

for run in range(runs):

  agents = []
  for i in range(number_agents): 
      agents.append(AgentIBL(env.out,default_utility=2.5)) # Init agent instances

  for i in range(episodes):
      
    # Run episode
    observations = env.reset() # Get first observations
    episode_reward = 0

    for j in range(steps):
      if j == steps-1:
          env.env.t_episode = True
      #######################################
      arriveds = deepcopy(env.env.arriveds)
      actions = [4,4,4]
      for a in range(number_agents):
          if not arriveds[a]:
              actions[a] = agents[a].move(observations[a])

      observations, rewards, t = env.step(actions)

      if j == steps-1:
          t = True

      for a, r in zip(range(number_agents),rewards):
          if not arriveds[a]: 
              agents[a].feedback(r)  
      if t:         
          for agent, r in zip(agents, rewards):
            if r > 0:
              agent.delayfeedback(r) 
            agent.episode_history = []


      episode_reward += rewards[0]
      if t: 
        break # If t then terminal state has been reached
    data.append([run, i, j, episode_reward])
  # print('Finished ', run, '-th run')

Plot results

import pandas as pd
import matplotlib.pyplot as plt

df = pd.DataFrame(data)

plt.plot(range(1,101), df.groupby(1).mean()[3], 'o-', color='darkgreen', markersize=2, linewidth =2, linestyle='--',label='SpeedyIBL')
plt.xlabel('Episode')
plt.ylabel('Average Reward')
plt.title('Cooperative navigation')
plt.grid(True)
plt.legend()
<matplotlib.legend.Legend at 0x7f37d3ec1a50>

png

Illustration of IBL for Minimap

Task description

The task is inspired by a search and rescue scenario, which involves an agent being placed in a building with multiple rooms and tasked with rescuing victims. Victims have been scattered across the building and their injuries have different degrees of severity with some needing more urgent care than others. In particular, there are 34 victims grouped into two categories (24 green victims and 10 yellow victims). There are many obstacles (walls) placed in the path forcing the agent to look for alternate routes. The agent's goal is to rescue as many of these victims as possible. The task is simulated as a $93 \times 50$ grid of cells which represents one floor of this building. Each cell is either empty, an obstacle or a victim. The agent can choose to move left, right, up or down, and only move one cell at a time.

Install and call the MINIMAP environment

!pip install -U vitenv
from vitenv import Environment
env = Environment('MINIMAP_V1')
Requirement already satisfied: vitenv in /usr/local/lib/python3.7/dist-packages (0.0.1)
Requirement already satisfied: numpy in /usr/local/lib/python3.7/dist-packages (from vitenv) (1.19.5)
Requirement already satisfied: opencv-python in /usr/local/lib/python3.7/dist-packages (from vitenv) (4.1.2.30)

Run experiments

runs = 5
episodes = 100
steps = 2500
number_agents = 3

data = []

for run in range(runs):

  
  agent = AgentIBL(env.out,default_utility=0.1) # Init agent instances

  for i in range(episodes):
      
    # Run episode
    observation = env.reset() # Get first observations
    episode_reward = 0

    for j in range(steps):
      #######################################
      action = agent.move(observation)

      observation, reward, t = env.step(action)

      if j == steps-1:
          t = True

      agent.feedback(reward)
      if reward > 0:
          agent.delayfeedback(reward)
          episode_reward += reward 
          agent.episode_history = []

      if t: 
        agent.episode_history = [] 
        break # If t then terminal state has been reached
    data.append([run, i, j, episode_reward])
  print('Finished ', run, '-th run')
Finished  0 -th run
Finished  1 -th run
Finished  2 -th run
Finished  3 -th run
Finished  4 -th run

Plot the result

import pandas as pd
import matplotlib.pyplot as plt

df = pd.DataFrame(data)

plt.plot(range(1,101), df.groupby(1).mean()[3], 'o-', color='darkgreen', markersize=2, linewidth =2, linestyle='--',label='SpeedyIBL')
plt.xlabel('Episode')
plt.ylabel('Average Reward')
plt.title('MINIMAP V1')
plt.grid(True)
plt.legend()
<matplotlib.legend.Legend at 0x7f37d44ded90>

png

Illustration of IBL for Firemen Task

Task description

The task replicates the coordination in firefighting service wherein agents need to pick up matching items for extinguishing fire. The task is simulated in a gridworld of size $11\times 14$. Two agents located within the gridworld are tasked with locating an equipment pickup area and choosing one of the firefight items. Afterwards, they need to navigate and find the location of fire (F) to extinguish it. The task is fully cooperative as both agents are required to extinguish one fire.

Install and call the FIREMAN environment

!pip install -U vitenv
from vitenv import Environment
env = Environment('FIREMEN_V1')
Requirement already satisfied: vitenv in /usr/local/lib/python3.7/dist-packages (0.0.4)
Requirement already satisfied: opencv-python in /usr/local/lib/python3.7/dist-packages (from vitenv) (4.1.2.30)
Requirement already satisfied: numpy in /usr/local/lib/python3.7/dist-packages (from vitenv) (1.19.5)

Run experiments

runs = 10
episodes = 100
steps = 2500
number_agents = 2

data = []

from copy import deepcopy

for run in range(runs):

  agents = []
  for i in range(number_agents): 
      agents.append(AgentIBL(env.out,default_utility=13)) # Init agent instances

  for i in range(episodes):
      
    # Run episode
    observations = env.reset() # Get first observations
    episode_reward = 0

    for j in range(steps):
      #######################################
      actions = []
      for agent, o in zip(agents,observations):
          actions.append(agent.move(o))
      observations, rewards, t = env.step(actions)

      for agent, r in zip(agents, rewards):
        agent.feedback(r)  
      if t:         
          for agent, r in zip(agents, rewards):
            agent.delayfeedback(r) 
            agent.episode_history = []

      if j == steps-1:
          t = True

      episode_reward += rewards[0]
      if t: 
        for agent in agents:
          agent.episode_history = []
        break # If t then terminal state has been reached
    data.append([run, i, j, episode_reward])
  print('Finished ', run, '-th run')
Finished  0 -th run
Finished  1 -th run
Finished  2 -th run
Finished  3 -th run
Finished  4 -th run
Finished  5 -th run
Finished  6 -th run
Finished  7 -th run
Finished  8 -th run
Finished  9 -th run

Plot the result

import pandas as pd
import matplotlib.pyplot as plt

df = pd.DataFrame(data)

plt.plot(range(1,101), df.groupby(1).mean()[3], 'o-', color='darkgreen', markersize=2, linewidth =2, linestyle='--',label='SpeedyIBL')
plt.xlabel('Episode')
plt.ylabel('Average Reward')
plt.title('FIREMEN TASK')
plt.grid(True)
plt.legend()
<matplotlib.legend.Legend at 0x7f53fd40df10>

png

Illustration of IBL for Tasks from GymAI

Install and call the CartPole Task

%pip install gym
import gym 
env = gym.make('CartPole-v1')
Requirement already satisfied: gym in /usr/local/lib/python3.7/dist-packages (0.17.3)
Requirement already satisfied: pyglet<=1.5.0,>=1.4.0 in /usr/local/lib/python3.7/dist-packages (from gym) (1.5.0)
Requirement already satisfied: scipy in /usr/local/lib/python3.7/dist-packages (from gym) (1.4.1)
Requirement already satisfied: cloudpickle<1.7.0,>=1.2.0 in /usr/local/lib/python3.7/dist-packages (from gym) (1.3.0)
Requirement already satisfied: numpy>=1.10.4 in /usr/local/lib/python3.7/dist-packages (from gym) (1.19.5)
Requirement already satisfied: future in /usr/local/lib/python3.7/dist-packages (from pyglet<=1.5.0,>=1.4.0->gym) (0.16.0)

Run experiments

runs = 100
episodes = 100
steps = 2500
number_agents = 1

data = []

for run in range(runs):

  
  agent = AgentIBL(env.action_space.n,default_utility=11) # Init agent instances

  for i in range(episodes):
      
    # Run episode
    observation = env.reset() # Get first observations
    episode_reward = 0

    for j in range(steps):
      #######################################
      action = agent.move(observation)

      observation, reward, t, info = env.step(action)

      if j == steps-1:
          t = True

      agent.feedback(reward)
      if reward > 0:
          agent.delayfeedback(reward)
          episode_reward += reward 
          agent.episode_history = []

      if t: 
        agent.episode_history = [] 
        break # If t then terminal state has been reached
    data.append([run, i, j, episode_reward])
  # print('Finished ', run, '-th run')

Plot the result

import pandas as pd
import matplotlib.pyplot as plt

df = pd.DataFrame(data)

plt.plot(range(1,episodes+1), df.groupby(1).mean()[3], 'o-', color='darkgreen', markersize=2, linewidth =2, linestyle='--',label='SpeedyIBL')
plt.xlabel('Episode')
plt.ylabel('Average Reward')
plt.title('CartPole Game')
plt.grid(True)
plt.legend()
<matplotlib.legend.Legend at 0x7f810f1ee590>

png

Implementation of SiameseXML (ICML 2021)

SiameseXML Code for SiameseXML: Siamese networks meet extreme classifiers with 100M labels Best Practices for features creation Adding sub-words on to

Extreme Classification 35 Nov 06, 2022
Official code for "Distributed Deep Learning in Open Collaborations" (NeurIPS 2021)

Distributed Deep Learning in Open Collaborations This repository contains the code for the NeurIPS 2021 paper "Distributed Deep Learning in Open Colla

Yandex Research 96 Sep 15, 2022
TianyuQi 10 Dec 11, 2022
Global Rhythm Style Transfer Without Text Transcriptions

Global Prosody Style Transfer Without Text Transcriptions This repository provides a PyTorch implementation of AutoPST, which enables unsupervised glo

Kaizhi Qian 193 Dec 30, 2022
Code release for Universal Domain Adaptation(CVPR 2019)

Universal Domain Adaptation Code release for Universal Domain Adaptation(CVPR 2019) Requirements python 3.6+ PyTorch 1.0 pip install -r requirements.t

THUML @ Tsinghua University 229 Dec 23, 2022
This repo contains research materials released by members of the Google Brain team in Tokyo.

Brain Tokyo Workshop 🧠 🗼 This repo contains research materials released by members of the Google Brain team in Tokyo. Past Projects Weight Agnostic

Google 1.2k Jan 02, 2023
A library for researching neural networks compression and acceleration methods.

A library for researching neural networks compression and acceleration methods.

Intel Labs 100 Dec 29, 2022
Boostcamp AI Tech 3rd / Basic Paper reading w.r.t Embedding

Boostcamp AI Tech 3rd : Basic Paper Reading w.r.t Embedding TL;DR 1992년부터 2018년도까지 이루어진 word/sentence embedding의 중요한 줄기를 이루는 기초 논문 스터디를 진행하고자 합니다. 논

Soyeon Kim 14 Nov 14, 2022
World Models with TensorFlow 2

World Models This repo reproduces the original implementation of World Models. This implementation uses TensorFlow 2.2. Docker The easiest way to hand

Zac Wellmer 234 Nov 30, 2022
[CIKM 2021] Enhancing Aspect-Based Sentiment Analysis with Supervised Contrastive Learning

Enhancing Aspect-Based Sentiment Analysis with Supervised Contrastive Learning. This repo contains the PyTorch code and implementation for the paper E

Akuchi 18 Dec 22, 2022
A fast and easy to use, moddable, Python based Minecraft server!

PyMine PyMine - The fastest, easiest to use, Python-based Minecraft Server! Features Note: This list is not always up to date, and doesn't contain all

PyMine 144 Dec 30, 2022
Learning to Reach Goals via Iterated Supervised Learning

Vanilla GCSL This repository contains a vanilla implementation of "Learning to Reach Goals via Iterated Supervised Learning" proposed by Dibya Gosh et

Christoph Heindl 4 Aug 10, 2022
Jetson Nano-based smart camera system that measures crowd face mask usage in real-time.

MaskCam MaskCam is a prototype reference design for a Jetson Nano-based smart camera system that measures crowd face mask usage in real-time, with all

BDTI 212 Dec 29, 2022
Multi Camera Calibration

Multi Camera Calibration 'modules/camera_calibration/app/camera_calibration.cpp' is for calculating extrinsic parameter of each individual cameras. 'm

7 Dec 01, 2022
Implementation based on Paper - Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling

Implementation based on Paper - Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling

HamasKhan 3 Jul 08, 2022
Pytorch cuda extension of grid_sample1d

Grid Sample 1d pytorch cuda extension of grid sample 1d. Since pytorch only supports grid sample 2d/3d, I extend the 1d version for efficiency. The fo

lyricpoem 24 Dec 03, 2022
Deeply Supervised, Layer-wise Prediction-aware (DSLP) Transformer for Non-autoregressive Neural Machine Translation

Non-Autoregressive Translation with Layer-Wise Prediction and Deep Supervision Training Efficiency We show the training efficiency of our DSLP model b

Chenyang Huang 36 Oct 31, 2022
Code for ICCV 2021 paper Graph-to-3D: End-to-End Generation and Manipulation of 3D Scenes using Scene Graphs

Graph-to-3D This is the official implementation of the paper Graph-to-3d: End-to-End Generation and Manipulation of 3D Scenes Using Scene Graphs | arx

Helisa Dhamo 33 Jan 06, 2023
A PyTorch implementation of EfficientDet.

A PyTorch impl of EfficientDet faithful to the original Google impl w/ ported weights

Ross Wightman 1.4k Jan 07, 2023
PyTorch implementation of Densely Connected Time Delay Neural Network

Densely Connected Time Delay Neural Network PyTorch implementation of Densely Connected Time Delay Neural Network (D-TDNN) in our paper "Densely Conne

Ya-Qi Yu 64 Oct 11, 2022