Code for evaluating Japanese pretrained models provided by NTT Ltd.

Overview

japanese-dialog-transformers

日本語の説明文はこちら

This repository provides the information necessary to evaluate the Japanese Transformer Encoder-decoder dialogue model provided by NTT on fairseq.


Table of contents.
Update log
Notice for using the codes
Model download
Quick start
LICENSE

Update log

  • 2021/09/17 Published dialogue models (fairseq version japanese-dialog-transformer-1.6B) and evaluation codes.

Notice for using the codes

The dialogue models provided are for evaluation and verification of model performance. Before downloading these models, please read the LICENSE and CAUTION documents. You can download and use these models only if you agree to the following three points.

  1. LICENSE
  2. To be used only for the purpose of evaluation and verification of this model, and not for the purpose of providing dialogue service itself.
  3. Take all possible care and measures to prevent damage caused by the generated text, and take responsibility for the text you generate, whether appropriate or inappropriate.

BibTeX

When publishing results using this model, please cite the following paper.

@misc{sugiyama2021empirical,
      title={Empirical Analysis of Training Strategies of Transformer-based Japanese Chit-chat Systems}, 
      author={Hiroaki Sugiyama and Masahiro Mizukami and Tsunehiro Arimoto and Hiromi Narimatsu and Yuya Chiba and Hideharu Nakajima and Toyomi Meguro},
      year={2021},
      eprint={2109.05217},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}

Model download


Quick start

The models published on this page can be used for utterance generation and additional fine-tuning using the scripts included in fairseq.

Install dependent libraries

The verification environment is as follows.

  • Python 3.8.10 on miniconda
  • CUDA 11.1/10.2
  • Pytorch 1.8.2 (For the installation commands, be sure to check the official page. We recommend using pip.)
  • fairseq 1.0.0(validated commit ID: 8adff65ab30dd5f3a3589315bbc1fafad52943e7)
  • sentencepiece 0.19.6

When installing fairseq, please check the official page and install the latest version. Normal pip install will only install the older version 0.10.2. If you want to run finetune with your own data, you need to install the standalone version of sentencepiece.

fairseq-interactive

Since fairseq-interactive does not have any way to keep the context, it generates responses based on the input sentences only, which is different from the setting that uses the context in Finetune and the paper experiment, so it is easy to generate inappropriate utterances.

In the following command, a small value (10) is used for beam and nbest (number of output candidates) to make the results easier to read. In actual use, it would be better to set the number to 20 or more for better results.

fairseq-interactive data/sample/bin/ \
 --path checkpoints/persona50k-flat_1.6B_33avog1i_4.16.pt\
 --beam 10 \
 --seed 0 \
 --min-len 10 \
 --source-lang src \
 --target-lang dst \
 --tokenizer space \
 --bpe sentencepiece \
 --sentencepiece-model data/dicts/sp_oall_32k.model \
--no-repeat-ngram-size 3 \
--nbest 10 \
--sampling \
--sampling-topp 0.9 \
--temperature 1.0 

dialog.py

The system utilizes a context of about four utterances, which is equivalent to the settings used in the Finetune and paper experiments.

python scripts/dialog.py data/sample/bin/ \
 --path checkpoints/dials5_1e-4_1li20zh5_tw5.143_step85.pt \
 --beam 80 \
 --min-len 10 \
 --source-lang src \
 --target-lang dst \
 --tokenizer space \
 --bpe sentencepiece \
 --sentencepiece-model data/dicts/sp_oall_32k.model \
 --no-repeat-ngram-size 3 \
 --nbest 80 \
 --sampling \
 --sampling-topp 0.9 \
 --temperature 1.0 \
 --show-nbest 5

Perplexity calculation on a specific data set

Computes the perplexity (ppl) on a particular dataset. The lower the ppl, the better the model can represent the interaction on that dataset.

fairseq-validate $DATA_PATH \
 --path $MODEL_PATH \
 --task translation \
 --source-lang src \
 --target-lang dst \
 --batch-size 2 \ 
 --ddp-backend no_c10d \
 --valid-subset test \ 
 --skip-invalid-size-inputs-valid-test 

Finetuning with Persona-chat and EmpatheticDialogues

By finetuning the Pretrained model with PersonaChat or EmpatheticDialogues, you can create a model that is almost identical to the finetuned model provided.

If you have your own dialogue data, you can place the data in the same format in data/*/raw and perform Finetune on that data. Please note, however, that we do not allow the release or distribution of Finetune models under the LISENCE. You can release your own data and let a third party run Finetune from this model.

Downloading and converting datasets

Convert data from Excel to a simple input statement (src) and output statement (dst) format, where the same row in src and dst is the corresponding input/output pair. 50000 rows are split and output as a train.

python scripts/extract_ed.py japanese_empathetic_dialogues.xlsx data/empdial/raw/

License

LISENCE

Owner
NTT Communication Science Laboratories
NTT Communication Science Laboratories
Mirco Ravanelli 2.3k Dec 27, 2022
Label data using HuggingFace's transformers and automatically get a prediction service

Label Studio for Hugging Face's Transformers Website • Docs • Twitter • Join Slack Community Transfer learning for NLP models by annotating your textu

Heartex 135 Dec 29, 2022
Pipeline for fast building text classification TF-IDF + LogReg baselines.

Text Classification Baseline Pipeline for fast building text classification TF-IDF + LogReg baselines. Usage Instead of writing custom code for specif

Dani El-Ayyass 57 Dec 07, 2022
Natural Language Processing for Adverse Drug Reaction (ADR) Detection

Natural Language Processing for Adverse Drug Reaction (ADR) Detection This repo contains code from a project to identify ADRs in discharge summaries a

Medicines Optimisation Service - Austin Health 21 Aug 05, 2022
BPEmb is a collection of pre-trained subword embeddings in 275 languages, based on Byte-Pair Encoding (BPE) and trained on Wikipedia.

BPEmb is a collection of pre-trained subword embeddings in 275 languages, based on Byte-Pair Encoding (BPE) and trained on Wikipedia. Its intended use is as input for neural models in natural languag

Benjamin Heinzerling 1.1k Jan 03, 2023
HAIS_2GNN: 3D Visual Grounding with Graph and Attention

HAIS_2GNN: 3D Visual Grounding with Graph and Attention This repository is for the HAIS_2GNN research project. Tao Gu, Yue Chen Introduction The motiv

Yue Chen 1 Nov 26, 2022
This is the Alpha of Nutte language, she is not complete yet / Essa é a Alpha da Nutte language, não está completa ainda

nutte-language This is the Alpha of Nutte language, it is not complete yet / Essa é a Alpha da Nutte language, não está completa ainda My language was

catdochrome 2 Dec 18, 2021
An official repository for tutorials of Probabilistic Modelling and Reasoning (2021/2022) - a University of Edinburgh master's course.

PMR computer tutorials on HMMs (2021-2022) This is a repository for computer tutorials of Probabilistic Modelling and Reasoning (2021/2022) - a Univer

Vaidotas Šimkus 10 Dec 06, 2022
Facebook AI Research Sequence-to-Sequence Toolkit written in Python.

Fairseq(-py) is a sequence modeling toolkit that allows researchers and developers to train custom models for translation, summarization, language mod

20.5k Jan 08, 2023
Input english text, then translate it between languages n times using the Deep Translator Python Library.

mass-translator About Input english text, then translate it between languages n times using the Deep Translator Python Library. How to Use Install dep

2 Mar 04, 2022
Ecommerce product title recognition package

revizor This package solves task of splitting product title string into components, like type, brand, model and article (or SKU or product code or you

Bureaucratic Labs 16 Mar 03, 2022
Translation to python of Chris Sims' optimization function

pycsminwel This is a locol minimization algorithm. Uses a quasi-Newton method with BFGS update of the estimated inverse hessian. It is robust against

Gustavo Amarante 1 Mar 21, 2022
Problem: Given a nepali news find the category of the news

Classification of category of nepali news catorgory using different algorithms Problem: Multiclass Classification Approaches: TFIDF for vectorization

pudasainishushant 2 Jan 09, 2022
Official codebase for Can Wikipedia Help Offline Reinforcement Learning?

Official codebase for Can Wikipedia Help Offline Reinforcement Learning?

Machel Reid 82 Dec 19, 2022
The aim of this task is to predict someone's English proficiency based on a text input.

English_proficiency_prediction_NLP The aim of this task is to predict someone's English proficiency based on a text input. Using the The NICT JLE Corp

1 Dec 13, 2021
Python interface for converting Penn Treebank trees to Stanford Dependencies and Universal Depenencies

PyStanfordDependencies Python interface for converting Penn Treebank trees to Universal Dependencies and Stanford Dependencies. Example usage Start by

David McClosky 64 May 08, 2022
Chinese segmentation library

What is loso? loso is a Chinese segmentation system written in Python. It was developed by Victor Lin ( Fang-Pen Lin 82 Jun 28, 2022

AI-powered literature discovery and review engine for medical/scientific papers

AI-powered literature discovery and review engine for medical/scientific papers paperai is an AI-powered literature discovery and review engine for me

NeuML 819 Dec 30, 2022
Index different CKAN entities in Solr, not just datasets

ckanext-sitesearch Index different CKAN entities in Solr, not just datasets Requirements This extension requires CKAN 2.9 or higher and Python 3 Featu

Open Knowledge Foundation 3 Dec 02, 2022
Transformer-based Text Auto-encoder (T-TA) using TensorFlow 2.

T-TA (Transformer-based Text Auto-encoder) This repository contains codes for Transformer-based Text Auto-encoder (T-TA, paper: Fast and Accurate Deep

Jeong Ukjae 13 Dec 13, 2022