QuALITY: Question Answering with Long Input Texts, Yes!

Related tags

Deep Learningquality
Overview

QuALITY: Question Answering with Long Input Texts, Yes!

Authors: Richard Yuanzhe Pang,* Alicia Parrish,* Nitish Joshi,* Nikita Nangia, Jason Phang, Angelica Chen, Vishakh Padmakumar, Johnny Ma, Jana Thompson, He He, and Samuel R. Bowman (* = equal contribution)

Data link

Download QuALITY v0.9 (zip).

Paper preprint

You can read the paper here.

Data README

Here are the explanations to the fields in the jsonl file. Each json line corresponds to the set of validated questions, corresponding to one article, written by one writer.

  • article_id: String. A five-digit number uniquely identifying the article. In each split, there are exactly two lines containing the same article_id, because two writers wrote questions for the same article.
  • set_unique_id: String. The unique ID corresponding to the set of questions, which corresponds to the line of json. Each set of questions is written by the same writer.
  • batch_num: String. The batch number. Our data collection is split in two groups, and there are three batches in each group. [i][j] means the j-th batch in the i-th group. For example, 23 corresponds to the third batch in the second group.
  • writer_id: String. The anonymized ID of the writer who wrote this set of questions.
  • source: String. The source of the article.
  • title: String. The title of the article.
  • author: String. The author of the article.
  • topic: String. The topic of the article.
  • url: String. The URL of the original unprocessed source article.
  • license: String. The license information for the article.
  • article: String. The HTML of the article. A script that converts HTML to plain texts is provided.
  • questions: A list of dictionaries explained below. Each line of json has a different number of questions because some questions were removed following validation.

As discussed, the value of questions is a list of dictionaries. Each dictionary has the following fields.

  • question: The question.
  • options: A list of four answer options.
  • gold_label: The correct answer, defined by a majority vote of 3 or 5 annotators + the original writer's label. The number corresponds to the option number (1-indexed) in options.
  • writer_label: The label the writer provided. The number corresponds to the option number (1-indexed) in options.
  • validation: A list of dictionaries containing the untimed validation results. Each dictionary contains the following fields.
    • untimed_annotator_id: The anonymized annotator IDs corresponding to the untimed validation results shown in untimed_answer.
    • untimed_answer: The responses in the untimed validation. Each question in the training set is annotated by three workers in most cases, and each question in the dev/test sets is annotated by five cases in most cases (see paper for exceptions).
    • untimed_eval1_answerability: The responses (represented numerically) to the first eval question in untimed validation. We asked the raters: “Is the question answerable and unambiguous?” The values correspond to the following choices:
      • 1: Yes, there is a single answer choice that is the most correct.
      • 2: No, two or more answer choices are equally correct.
      • 3: No, it is unclear what the question is asking, or the question or answer choices are unrelated to the passage.
    • untimed_eval2_context: The responses (represented numerically) to the second eval question in untimed validation. We asked the raters: “How much of the passage/text is needed as context to answer this question correctly?” The values correspond to the following choices:
      • 1: Only a sentence or two of context.
      • 2: At least a long paragraph or two of context.
      • 3: At least a third of the passage for context.
      • 4: Most or all of the passage for context.
    • untimed_eval3_distractor: The responses to the third eval question in untimed validation. We asked the raters: “Which of the options that you did not select was the best "distractor" item (i.e., an answer choice that you might be tempted to select if you hadn't read the text very closely)?” The numbers correspond to the option numbers (1-indexed).
  • speed_validation: A list of dictionaries containing the speed validation results. Each dictionary contains the following fields.
    • speed_annotator_id: The anonymized annotator IDs corresponding to the speed annotation results shown in speed_answer.
    • speed_answer: The responses in the speed validation. Each question is annotated by five workers.
  • difficult: A binary value. 1 means that less than 50% of the speed annotations answer the question correctly, so we include this question in the hard subset. Otherwise, the value is 0. In our evaluations, we report one accuracy figure for the entire dataset, and a second for the difficult=1 subset.

Validation criteria for the questions

  • More than 50% of annotators answer the question correctly in the untimed setting. That is, more than 50% of the untimed_answer annotations agree with gold_label (defined as the majority vote of validators' annotations together with the writer's provided label).
  • More than 50% of annotators think that the question is unambiguous and answerable. That is, more than 50% of the untimed_eval1_answerability annotations have 1's.

What are the hard questions?

  • More than 50% of annotators answer the question correctly in the untimed setting. That is, more than 50% of the untimed_answer annotations agree with gold_label.
  • More than 50% of annotators think that the question is unambiguous and answerable. That is, more than 50% of the untimed_eval1_answerability annotations have 1's.
  • More than 50% of annotators answer the question incorrectly in the speed validaiton setting. That is, more than 50% of the speed_answer annotations are incorrect.

Test set

The annotations for questions in the test set will not be released. We are currently working on a leaderboard. Stay tuned for an update by early January!

Code

The code for our baseline models will be released soon. Stay tuned for an update by early January!

Citation

@article{pang2021quality,
  title={{QuALITY}: Question Answering with Long Input Texts, Yes!},
  author={Pang, Richard Yuanzhe and Parrish, Alicia and Joshi, Nitish and Nangia, Nikita and Phang, Jason and Chen, Angelica and Padmakumar, Vishakh and Ma, Johnny and Thompson, Jana and He, He and Bowman, Samuel R.},
  journal={arXiv preprint arXiv:2112.08608},
  year={2021}
}

Contact

{yzpang, alicia.v.parrish}@nyu.edu

Owner
ML² AT CILVR
The Machine Learning for Language Group at NYU CILVR
ML² AT CILVR
A Pytorch implementation of SMU: SMOOTH ACTIVATION FUNCTION FOR DEEP NETWORKS USING SMOOTHING MAXIMUM TECHNIQUE

SMU_pytorch A Pytorch Implementation of SMU: SMOOTH ACTIVATION FUNCTION FOR DEEP NETWORKS USING SMOOTHING MAXIMUM TECHNIQUE arXiv https://arxiv.org/ab

Fuhang 36 Dec 24, 2022
Open-L2O: A Comprehensive and Reproducible Benchmark for Learning to Optimize Algorithms

Open-L2O This repository establishes the first comprehensive benchmark efforts of existing learning to optimize (L2O) approaches on a number of proble

VITA 161 Jan 02, 2023
Proof-Of-Concept Piano-Drums Music AI Model/Implementation

Rock Piano "When all is one and one is all, that's what it is to be a rock and not to roll." ---Led Zeppelin, "Stairway To Heaven" Proof-Of-Concept Pi

Alex 4 Nov 28, 2021
A TensorFlow 2.x implementation of Masked Autoencoders Are Scalable Vision Learners

Masked Autoencoders Are Scalable Vision Learners A TensorFlow implementation of Masked Autoencoders Are Scalable Vision Learners [1]. Our implementati

Aritra Roy Gosthipaty 59 Dec 10, 2022
Zen-NAS: A Zero-Shot NAS for High-Performance Deep Image Recognition

Zen-NAS: A Zero-Shot NAS for High-Performance Deep Image Recognition How Fast Compare to Other Zero-Shot NAS Proxies on CIFAR-10/100 Pre-trained Model

190 Dec 29, 2022
Whisper is a file-based time-series database format for Graphite.

Whisper Overview Whisper is one of three components within the Graphite project: Graphite-Web, a Django-based web application that renders graphs and

Graphite Project 1.2k Dec 25, 2022
Simple and ready-to-use tutorials for TensorFlow

TensorFlow World To support maintaining and upgrading this project, please kindly consider Sponsoring the project developer. Any level of support is a

Amirsina Torfi 4.5k Dec 23, 2022
Rename Images with Auto Generated Neural Image Captions

Recaption Images with Generated Neural Image Caption Example Usage: Commandline: Recaption all images from folder /home/feng/Downloads/images to folde

feng wang 3 May 01, 2022
Wandb-predictions - WANDB Predictions With Python

WANDB API CI/CD Below we capture the CI/CD scenarios that we would expect with o

Anish Shah 6 Oct 07, 2022
[CVPR 2021] Official PyTorch Implementation for "Iterative Filter Adaptive Network for Single Image Defocus Deblurring"

IFAN: Iterative Filter Adaptive Network for Single Image Defocus Deblurring Checkout for the demo (GUI/Google Colab)! The GUI version might occasional

Junyong Lee 173 Dec 30, 2022
This repository contains the exercises and its solution contained in the book "An Introduction to Statistical Learning" in python.

An-Introduction-to-Statistical-Learning This repository contains the exercises and its solution contained in the book An Introduction to Statistical L

2.1k Jan 02, 2023
Some bravo or inspiring research works on the topic of curriculum learning.

Towards Scalable Unpaired Virtual Try-On via Patch-Routed Spatially-Adaptive GAN Official code for NeurIPS 2021 paper "Towards Scalable Unpaired Virtu

131 Jan 07, 2023
NICE-GAN — Official PyTorch Implementation Reusing Discriminators for Encoding: Towards Unsupervised Image-to-Image Translation

NICE-GAN-pytorch - Official PyTorch implementation of NICE-GAN: Reusing Discriminators for Encoding: Towards Unsupervised Image-to-Image Translation

Runfa Chen 208 Nov 25, 2022
[CVPR 2021] Unsupervised Degradation Representation Learning for Blind Super-Resolution

DASR Pytorch implementation of "Unsupervised Degradation Representation Learning for Blind Super-Resolution", CVPR 2021 [arXiv] Overview Requirements

Longguang Wang 318 Dec 24, 2022
PyTorch implementation of the Crafting Better Contrastive Views for Siamese Representation Learning

Crafting Better Contrastive Views for Siamese Representation Learning This is the official PyTorch implementation of the ContrastiveCrop paper: @artic

249 Dec 28, 2022
code for `Look Closer to Segment Better: Boundary Patch Refinement for Instance Segmentation`

Look Closer to Segment Better: Boundary Patch Refinement for Instance Segmentation (CVPR 2021) Introduction PBR is a conceptually simple yet effective

H.Chen 143 Jan 05, 2023
PyTorch implementation for ACL 2021 paper "Maria: A Visual Experience Powered Conversational Agent".

Maria: A Visual Experience Powered Conversational Agent This repository is the Pytorch implementation of our paper "Maria: A Visual Experience Powered

Jokie 22 Dec 12, 2022
In this project we predict the forest cover type using the cartographic variables in the training/test datasets.

Kaggle Competition: Forest Cover Type Prediction In this project we predict the forest cover type (the predominant kind of tree cover) using the carto

Marianne Joy Leano 1 Mar 15, 2022
Character Controllers using Motion VAEs

Character Controllers using Motion VAEs This repo is the codebase for the SIGGRAPH 2020 paper with the title above. Please find the paper and demo at

Electronic Arts 165 Jan 03, 2023
Graph Analysis From Scratch

Graph Analysis From Scratch Goal In this notebook we wanted to implement some functionalities to analyze a weighted graph only by using algorithms imp

Arturo Ghinassi 0 Sep 17, 2022