Official Implementation of DE-DETR and DELA-DETR in "Towards Data-Efficient Detection Transformers"

Overview

DE-DETRs

By Wen Wang, Jing Zhang, Yang Cao, Yongliang Shen, and Dacheng Tao

This repository is an official implementation of DE-DETR and DELA-DETR in the paper Towards Data-Efficient Detection Transformers.

For the implementation of DE-CondDETR and DELA-CondDETR, please refer to DE-CondDETR.

Introduction

TL; DR. We identify the data-hungry issue of existing detection transformers and alleviate it by simply alternating how key and value sequences are constructed in the cross-attention layer, with minimum modifications to the original models. Besides, we introduce a simple yet effective label augmentation method to provide richer supervision and improve data efficiency.

DE-DETR

Abstract. Detection Transformers have achieved competitive performance on the sample-rich COCO dataset. However, we show most of them suffer from significant performance drops on small-size datasets, like Cityscapes. In other words, the detection transformers are generally data-hungry. To tackle this problem, we empirically analyze the factors that affect data efficiency, through a step-by-step transition from a data-efficient RCNN variant to the representative DETR. The empirical results suggest that sparse feature sampling from local image areas holds the key. Based on this observation, we alleviate the data-hungry issue of existing detection transformers by simply alternating how key and value sequences are constructed in the cross-attention layer, with minimum modifications to the original models. Besides, we introduce a simple yet effective label augmentation method to provide richer supervision and improve data efficiency. Experiments show that our method can be readily applied to different detection transformers and improve their performance on both small-size and sample-rich datasets.

Label Augmentation

Main Results

The experimental results and model weights trained on Cityscapes are shown below.

Model Epochs mAP [email protected] [email protected] [email protected] [email protected] [email protected] Log & Model
DETR 300 11.7 26.5 9.3 2.6 9.2 25.6 Google Drive
DE-DETR 50 22.2 41.7 20.5 4.9 19.7 40.8 Google Drive
DELA-DETR 50 25.2 46.8 22.8 6.5 23.8 44.3 Google Drive

The experimental results and model weights trained on COCO 2017 are shown below.

Model Epochs mAP [email protected] [email protected] [email protected] [email protected] [email protected] Log & Model
DETR 50 33.6 54.6 34.2 13.2 35.7 53.5 Google Drive
DE-DETR 50 40.2 60.4 43.2 23.3 42.1 56.4 Google Drive
DELA-DETR 50 41.9 62.6 44.8 24.9 44.9 56.8 Google Drive

Note:

  1. The number of queries is increased from 100 to 300 in DELA-DETR.
  2. The performance of the model weights on Cityscapes is slightly different from that reported in the paper, because the results in the paper are the average of five repeated runs with different random seeds.

Installation

Requirements

  • Linux, CUDA>=9.2, GCC>=5.4

  • Python>=3.7

  • PyTorch>=1.5.0, torchvision>=0.6.0 (following instructions here)

  • Detectron2>=0.5 for RoIAlign (following instructions here)

  • Other requirements

    pip install -r requirements.txt

Usage

Dataset preparation

The COCO 2017 dataset can be downloaded from here and the Cityscapes datasets can be downloaded from here. The annotations in COCO format can be obtained from here. Afterward, please organize the datasets and annotations as following:

data
└─ cityscapes
   └─ leftImg8bit
      |─ train
      └─ val
└─ coco
   |─ annotations
   |─ train2017
   └─ val2017
└─ CocoFormatAnnos
   |─ cityscapes_train_cocostyle.json
   |─ cityscapes_val_cocostyle.json
   |─ instances_train2017_sample11828.json
   |─ instances_train2017_sample5914.json
   |─ instances_train2017_sample2365.json
   └─ instances_train2017_sample1182.json

The annotations for down-sampled COCO 2017 dataset is generated using utils/downsample_coco.py

Training

Training DELA-DETR on Cityscapes

python -m torch.distributed.launch --nproc_per_node=2 --master_port=29501 --use_env main.py --dataset_file cityscapes --coco_path data/cityscapes --batch_size 4 --model dela-detr --repeat_label 2 --nms --num_queries 300 --wandb

Training DELA-DETR on down-sampled COCO 2017, with e.g. sample_rate=0.01

python -m torch.distributed.launch --nproc_per_node=2 --master_port=29501 --use_env main.py --dataset_file cocodown --coco_path data/coco --sample_rate 0.01 --batch_size 4 --model dela-detr --repeat_label 2 --nms --num_queries 300 --wandb

Training DELA-DETR on COCO 2017

python -m torch.distributed.launch --nproc_per_node=8 --master_port=29501 --use_env main.py --dataset_file coco --coco_path data/coco --batch_size 4 --model dela-detr --repeat_label 2 --nms --num_queries 300 --wandb

Training DE-DETR on Cityscapes

python -m torch.distributed.launch --nproc_per_node=2 --master_port=29501 --use_env main.py --dataset_file cityscapes --coco_path data/cityscapes --batch_size 4 --model de-detr --wandb

Training DETR baseline

Please refer to the detr branch.

Evaluation

You can get the pretrained model (the link is in "Main Results" session), then run following command to evaluate it on the validation set:

<training command> --resume <path to pre-trained model> --eval

Acknowledgement

This project is based on DETR and Deformable DETR. Thanks for their wonderful works. See LICENSE for more details.

Citing DE-DETRs

If you find DE-DETRs useful in your research, please consider citing:

@misc{wang2022towards,
      title={Towards Data-Efficient Detection Transformers}, 
      author={Wen Wang and Jing Zhang and Yang Cao and Yongliang Shen and Dacheng Tao},
      year={2022},
      eprint={2203.09507},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
Owner
Wen Wang
Wen Wang
A PyTorch implementation of NeRF (Neural Radiance Fields) that reproduces the results.

NeRF-pytorch NeRF (Neural Radiance Fields) is a method that achieves state-of-the-art results for synthesizing novel views of complex scenes. Here are

Yen-Chen Lin 3.2k Jan 08, 2023
Code for the Paper: Alexandra Lindt and Emiel Hoogeboom.

Discrete Denoising Flows This repository contains the code for the experiments presented in the paper Discrete Denoising Flows [1]. To give a short ov

Alexandra Lindt 3 Oct 09, 2022
A disassembler for the RP2040 Programmable I/O State-machine!

piodisasm A disassembler for the RP2040 Programmable I/O State-machine! Usage Just run piodisasm.py on a file that contains the PIO code as hex! (Such

Ghidra Ninja 29 Dec 06, 2022
Rethinking Transformer-based Set Prediction for Object Detection

Rethinking Transformer-based Set Prediction for Object Detection Here are the code for the ICCV paper. The code is adapted from Detectron2 and AdelaiD

Zhiqing Sun 62 Dec 03, 2022
PyTorch implementation of Value Iteration Networks (VIN): Clean, Simple and Modular. Visualization in Visdom.

VIN: Value Iteration Networks This is an implementation of Value Iteration Networks (VIN) in PyTorch to reproduce the results.(TensorFlow version) Key

Xingdong Zuo 215 Dec 07, 2022
A collection of metrics for evaluating timbre dissimilarity using the TorchMetrics API

Timbre Dissimilarity Metrics A collection of metrics for evaluating timbre dissimilarity using the TorchMetrics API Installation pip install -e . Usag

Ben Hayes 21 Jan 05, 2022
Tools for investing in Python

InvestOps Original repository on GitHub Original author is Magnus Erik Hvass Pedersen Introduction This is a Python package with simple and effective

24 Nov 26, 2022
An implementation of "Optimal Textures: Fast and Robust Texture Synthesis and Style Transfer through Optimal Transport"

Optex An implementation of Optimal Textures: Fast and Robust Texture Synthesis and Style Transfer through Optimal Transport for TU Delft CS4240. You c

Hans Brouwer 33 Jan 05, 2023
Migration of Edge-based Distributed Federated Learning

FedFly: Towards Migration in Edge-based Distributed Federated Learning About the research Due to mobility, a device participating in Federated Learnin

qub-blesson 11 Nov 13, 2022
MNIST, but with Bezier curves instead of pixels

bezier-mnist This is a work-in-progress vector version of the MNIST dataset. Samples Here are some samples from the training set. Note that, while the

Alex Nichol 15 Jan 16, 2022
List of all dependencies affected by node-ipc malicious commit

node-ipc-dependencies-list List of all dependencies affected by node-ipc malicious commit as of 17/3/2022 - 19/3/2022 (timestamp) Please improve upon

99 Oct 15, 2022
Low Complexity Channel estimation with Neural Network Solutions

Interpolation-ResNet Invited paper for WSA 2021, called 'Low Complexity Channel estimation with Neural Network Solutions'. Low complexity residual con

Dianxin 10 Dec 10, 2022
Implementation for paper LadderNet: Multi-path networks based on U-Net for medical image segmentation

Implementation for paper LadderNet: Multi-path networks based on U-Net for medical image segmentation This implementation is based on orobix implement

Juntang Zhuang 116 Sep 06, 2022
“Robust Lightweight Facial Expression Recognition Network with Label Distribution Training”, AAAI 2021.

EfficientFace Zengqun Zhao, Qingshan Liu, Feng Zhou. "Robust Lightweight Facial Expression Recognition Network with Label Distribution Training". AAAI

Zengqun Zhao 119 Jan 08, 2023
这是一个利用facenet和retinaface实现人脸识别的库,可以进行在线的人脸识别。

Facenet+Retinaface:人脸识别模型在Pytorch当中的实现 目录 注意事项 Attention 所需环境 Environment 文件下载 Download 预测步骤 How2predict 参考资料 Reference 注意事项 该库中包含了两个网络,分别是retinaface和

Bubbliiiing 102 Dec 30, 2022
Graph Self-Attention Network for Learning Spatial-Temporal Interaction Representation in Autonomous Driving

GSAN Introduction Code for paper GSAN: Graph Self-Attention Network for Learning Spatial-Temporal Interaction Representation in Autonomous Driving, wh

YE Luyao 6 Oct 27, 2022
A curated list of automated deep learning (including neural architecture search and hyper-parameter optimization) resources.

Awesome AutoDL A curated list of automated deep learning related resources. Inspired by awesome-deep-vision, awesome-adversarial-machine-learning, awe

D-X-Y 2k Dec 30, 2022
Official Implementation of CVPR 2022 paper: "Mimicking the Oracle: An Initial Phase Decorrelation Approach for Class Incremental Learning"

(CVPR 2022) Mimicking the Oracle: An Initial Phase Decorrelation Approach for Class Incremental Learning ArXiv This repo contains Official Implementat

Yujun Shi 24 Nov 01, 2022
Adaptation through prediction: multisensory active inference torque control

Adaptation through prediction: multisensory active inference torque control Submitted to IEEE Transactions on Cognitive and Developmental Systems Abst

Cristian Meo 1 Nov 07, 2022
Codes and pretrained weights for winning submission of 2021 Brain Tumor Segmentation (BraTS) Challenge

Winning submission to the 2021 Brain Tumor Segmentation Challenge This repo contains the codes and pretrained weights for the winning submission to th

94 Dec 28, 2022