Official Pytorch and JAX implementation of "Efficient-VDVAE: Less is more"

Overview

The Official Pytorch and JAX implementation of "Efficient-VDVAE: Less is more" Arxiv preprint

Louay Hazami   ·   Rayhane Mama   ·   Ragavan Thurairatnam


MIT license PWC PWC PWC PWC PWC PWC PWC PWC

Efficient-VDVAE is a memory and compute efficient very deep hierarchical VAE. It converges faster and is more stable than current hierarchical VAE models. It also achieves SOTA likelihood-based performance on several image datasets.

Pre-trained model checkpoints

We provide checkpoints of pre-trained models on MNIST, CIFAR-10, Imagenet 32x32, Imagenet 64x64, CelebA 64x64, CelebAHQ 256x256 (5-bits and 8-bits), FFHQ 256x256 (5-bits and 8bits), CelebAHQ 1024x1024 and FFHQ 1024x1024 in the links in the table below. All provided models are the ones trained for table 4 of the paper.

Dataset Pytorch JAX Negative ELBO
Logs Checkpoints Logs Checkpoints
MNIST link link link link 79.09 nats
CIFAR-10 Queued Queued link link 2.87 bits/dim
Imagenet 32x32 link link link link 3.58 bits/dim
Imagenet 64x64 link link link link 3.30 bits/dim
CelebA 64x64 link link link link 1.83 bits/dim
CelebAHQ 256x256 (5-bits) link link link link 0.51 bits/dim
CelebAHQ 256x256 (8-bits) link link link link 1.35 bits/dim
FFHQ 256x256 (5-bits) link link link link 0.53 bits/dim
FFHQ 256x256 (8-bits) link link link link 2.17 bits/dim
CelebAHQ 1024x1024 link link link link 1.01 bits/dim
FFHQ 1024x1024 link link link link 2.30 bits/dim

Notes:

  • Downloading from the "Checkpoints" link will download the minimal required files to resume training/do inference. The minimal files are the model checkpoint file and the saved hyper-parameters of the run (explained further below).
  • Downloading from the "Logs" link will download additional pre-training logs such as tensorboard files or saved images from training. "Logs" also holds the saved hyper-parameters of the run.
  • Downloaded "Logs" and/or "Checkpoints" should be always unzipped in their implementation folder (efficient_vdvae_torch for Pytorch checkpoints and efficient_vdvae_jax for JAX checkpoints).
  • Some of the model checkpoints are missing in either Pytorch or JAX for the moment. We will update them soon.

Pre-requisites

To run this codebase, you need:

  • Machine that runs a linux based OS (tested on Ubuntu 20.04 (LTS))
  • GPUs (preferably more than 16GB)
  • Docker
  • Python 3.7 or higher
  • CUDA 11.1 or higher (can be installed from here)

We recommend running all the code below inside a Linux screen or any other terminal multiplexer, since some commands can take hours/days to finish and you don't want them to die when you close your terminal.

Note:

  • If you're planning on running the JAX implementation, the installed JAX must use exactly the same CUDA and Cudnn versions installed. Our default Dockerfile assumes the code will run with CUDA 11.4 or newer and should be changed otherwise. For more details, refer to JAX installation.

Installation

To create the docker image used in both the Pytorch and JAX implementations:

cd build  
docker build -t efficient_vdvae_image .  

Note:

  • If using JAX library on ampere architecture GPUs, it's possible to face a random GPU hanging problem when training on multiple GPUs (issue). In that case, we provide an alternative docker image with an older version of JAX to bypass the issue until a solution is found.

All code executions should be done within a docker container. To start the docker container, we provide a utility script:

sh docker_run.sh  # Starts the container and attaches terminal
cd /workspace/Efficient-VDVAE  # Inside docker container

Setup datasets

All datasets can be automatically downloaded and pre-processed from the convenience script we provide:

cd data_scripts
sh download_and_preprocess.sh <dataset_name>

Notes:

  • <dataset_name> can be one of (imagenet32, imagenet64, celeba, celebahq, ffhq). MNIST and CIFAR-10 datasets will get automatically downloaded later when training the model, and they do no require any dataset setup.
  • For the celeba dataset, a manual download of img_align_celeba.zip and list_eval_partition.txt files is necessary. Both files should be placed under <project_path>/dataset_dumps/.
  • img_align_celeba.zip download link.
  • list_eval_partition.txt download link.

Setting the hyper-parameters

In this repository, we use hparams library (already included in the Dockerfile) for hyper-parameter management:

  • Specify all run parameters (number of GPUs, model parameters, etc) in one .cfg file
  • Hparams evaluates any expression used as "value" in the .cfg file. "value" can be any basic python object (floats, strings, lists, etc) or any python basic expression (1/2, max(3, 7), etc.) as long as the evaluation does not require any library importations or does not rely on other values from the .cfg.
  • Hparams saves the configuration of previous runs for reproducibility, resuming training, etc.
  • All hparams are saved by name, and re-using the same name will recall the old run instead of making a new one.
  • The .cfg file is split into sections for readability, and all parameters in the file are accessible as class attributes in the codebase for convenience.
  • The HParams object keeps a global state throughout all the scripts in the code.

We highly recommend having a deeper look into how this library works by reading the hparams library documentation, the parameters description and figures 4 and 5 in the paper before trying to run Efficient-VDVAE.

We have heavily tested the robustness and stability of our approach, so changing the model/optimization hyper-parameters for memory load reduction should not introduce any drastic instabilities as to make the model untrainable. That is of course as long as the changes don't negate the important stability points we describe in the paper.

Training the Efficient-VDVAE

To run Efficient-VDVAE in Torch:

cd efficient_vdvae_torch  
# Set the hyper-parameters in "hparams.cfg" file  
# Set "NUM_GPUS_PER_NODE" in "train.sh" file  
sh train.sh  

To run Efficient-VDVAE in JAX:

cd efficient_vdvae_jax  
# Set the hyper-parameters in "hparams.cfg" file  
python train.py  

If you want to run the model with less GPUs than available on the hardware, for example 2 GPUs out of 8:

CUDA_VISIBLE_DEVICES=0,1 sh train.sh  # For torch  
CUDA_VISIBLE_DEVICES=0,1 python train.py  # For JAX  

Models automatically create checkpoints during training. To resume a model from its last checkpoint, set its <run.name> in hparams.cfg file and re-run the same training commands.

Since training commands will save the hparams of the defined run in the .cfg file. If trying to restart a pre-existing run (by re-using its name in hparams.cfg), we provide a convenience script for resetting saved runs:

cd efficient_vdvae_torch  # or cd efficient_vdvae_jax  
sh reset.sh <run.name>  # <run.name> is the first field in hparams.cfg  

Note:

  • To make things easier for new users, we provide example hparams.cfg files that can be used under the egs folder. Detailed description of the role of each parameter is also inside hparams.cfg.
  • Hparams in egs are to be viewed only as guiding examples, they are not meant to be exactly similar to pre -trained checkpoints or experiments done in the paper.
  • While the example hparams under the naming convention ..._baseline.cfg are not exactly the hparams of C2 models in the paper (pre-trained checkpoints), they are easier to design models that achieve the same performance and can be treated as equivalents to C2 models.

Monitoring the training process

While writing this codebase, we put extra emphasis on verbosity and logging. Aside from the printed logs on terminal (during training), you can monitor the training progress and keep track of useful metrics using Tensorboard:

# While outside efficient_vdvae_torch or efficient_vdvae_jax  
# Run outside the docker container
tensorboard --logdir . --port <port_id> --reload_multifile True  

In the browser, navigate to localhost:<port_id> to visualize all saved metrics.

If Tensorboard is not installed (outside the docker container):

pip install --upgrade tensorboard

Inference with the Efficient-VDVAE

Efficient-VDVAE support multiple inference modes:

  • "reconstruction": Encodes then decodes the test set images and computes test NLL and SSIM.
  • "generation": Generates random images from the prior distribution. Randomness is controlled by the run.seed parameter.
  • "div_stats": Pre-computes the average KL divergence stats used to determine turned-off variates (refer to section 7 of the paper). Note: This mode needs to be run before "encoding" mode and before trying to do masked "reconstruction" (Refer to hparams.cfg for a detailed description).
  • "encoding": Extracts the latent distribution from the inference model, pruned to the quantile defined by synthesis.variates_masks_quantile parameter. This latent distribution is usable in downstream tasks.

To run the inference:

cd efficient_vdvae_torch  # or cd efficient_vdvae_jax  
# Set the inference mode in "logs-<run.name>/hparams-<run.name>.cfg"  
# Set the same <run.name> in "hparams.cfg"  
python synthesize.py  

Notes:

  • Since training a model with a name <run.name> will save that configuration under logs-<run.name>/hparams-<run.name>.cfg for reproducibility and error reduction. Any changes that one wants to make during inference time need to be applied on the saved hparams file (logs-<run.name>/hparams-<run.name>.cfg) instead of the main file hparams.cfg.
  • The torch implementation currently doesn't support multi-GPU inference. The JAX implementation does.

Potential TODOs

  • Make data loaders Out-Of-Core (OOC) in Pytorch
  • Make data loaders Out-Of-Core (OOC) in JAX
  • Update pre-trained model checkpoints
  • Add Fréchet-Inception Distance (FID) and Inception Score (IS) as measures for sample quality performance.
  • Improve the format of the encoded dataset used in downstream tasks (output of encoding mode, if there is a need)
  • Write a decoding mode API (if needed).

Bibtex

If you happen to use this codebase, please cite our paper:

@article{hazami2022efficient,
  title={Efficient-VDVAE: Less is more},
  author={Hazami, Louay and Mama, Rayhane and Thurairatnam, Ragavan},
  journal={arXiv preprint arXiv:2203.13751},
  year={2022}
}
Owner
Rayhane Mama
- If it seems impossible, then it's worth doing.
Rayhane Mama
Apache Flink

Apache Flink Apache Flink is an open source stream processing framework with powerful stream- and batch-processing capabilities. Learn more about Flin

The Apache Software Foundation 20.4k Dec 30, 2022
Multi-layer convolutional LSTM with Pytorch

Convolution_LSTM_pytorch Thanks for your attention. I haven't got time to maintain this repo for a long time. I recommend this repo which provides an

Zijie Zhuang 734 Jan 03, 2023
ML powered analytics engine for outlier detection and root cause analysis.

Website • Docs • Blog • LinkedIn • Community Slack ML powered analytics engine for outlier detection and root cause analysis ✨ What is Chaos Genius? C

Chaos Genius 523 Jan 04, 2023
A PyTorch implementation of EfficientDet.

A PyTorch impl of EfficientDet faithful to the original Google impl w/ ported weights

Ross Wightman 1.4k Jan 07, 2023
zeus is a Python implementation of the Ensemble Slice Sampling method.

zeus is a Python implementation of the Ensemble Slice Sampling method. Fast & Robust Bayesian Inference, Efficient Markov Chain Monte Carlo (MCMC), Bl

Minas Karamanis 197 Dec 04, 2022
MicroNet: Improving Image Recognition with Extremely Low FLOPs (ICCV 2021)

MicroNet: Improving Image Recognition with Extremely Low FLOPs (ICCV 2021) A pytorch implementation of MicroNet. If you use this code in your research

Yunsheng Li 293 Dec 28, 2022
Visual Tracking by TridenAlign and Context Embedding

Visual Tracking by TridentAlign and Context Embedding (TACT) Test code for "Visual Tracking by TridentAlign and Context Embedding" Janghoon Choi, Juns

Janghoon Choi 32 Aug 25, 2021
Sky Computing: Accelerating Geo-distributed Computing in Federated Learning

Sky Computing Introduction Sky Computing is a load-balanced framework for federated learning model parallelism. It adaptively allocate model layers to

HPC-AI Tech 72 Dec 27, 2022
Inference pipeline for our participation in the FeTA challenge 2021.

feta-inference Inference pipeline for our participation in the FeTA challenge 2021. Team name: TRABIT Installation Download the two folders in https:/

Lucas Fidon 2 Apr 13, 2022
Generalized hybrid model for mode-locked laser diodes with an extended passive cavity

GenHybridMLLmodel Generalized hybrid model for mode-locked laser diodes with an extended passive cavity This hybrid simulation strategy combines a tra

Stijn Cuyvers 3 Sep 21, 2022
HALO: A Skeleton-Driven Neural Occupancy Representation for Articulated Hands

HALO: A Skeleton-Driven Neural Occupancy Representation for Articulated Hands Oral Presentation, 3DV 2021 Korrawe Karunratanakul, Adrian Spurr, Zicong

Korrawe Karunratanakul 43 Oct 07, 2022
[CVPR 2021] Anycost GANs for Interactive Image Synthesis and Editing

Anycost GAN video | paper | website Anycost GANs for Interactive Image Synthesis and Editing Ji Lin, Richard Zhang, Frieder Ganz, Song Han, Jun-Yan Zh

MIT HAN Lab 726 Dec 28, 2022
Bi-level feature alignment for versatile image translation and manipulation (Under submission of TPAMI)

Bi-level feature alignment for versatile image translation and manipulation (Under submission of TPAMI) Preparation Clone the Synchronized-BatchNorm-P

Fangneng Zhan 12 Aug 10, 2022
Unet network with mean teacher for altrasound image segmentation

Unet network with mean teacher for altrasound image segmentation

5 Nov 21, 2022
[CVPR 2021] Rethinking Text Segmentation: A Novel Dataset and A Text-Specific Refinement Approach

Rethinking Text Segmentation: A Novel Dataset and A Text-Specific Refinement Approach This is the repo to host the dataset TextSeg and code for TexRNe

SHI Lab 174 Dec 19, 2022
Draw like Bob Ross using the power of Neural Networks (With PyTorch)!

Draw like Bob Ross using the power of Neural Networks! (+ Pytorch) Learning Process Visualization Getting started Install dependecies Requires python3

Kendrick Tan 116 Mar 07, 2022
Heterogeneous Deep Graph Infomax

Heterogeneous-Deep-Graph-Infomax Parameter Setting: HDGI-A: Node-level dimension: 16 Attention head: 4 Semantic-level attention vector: 8 learning rat

52 Oct 31, 2022
UPSNet: A Unified Panoptic Segmentation Network

UPSNet: A Unified Panoptic Segmentation Network Introduction UPSNet is initially described in a CVPR 2019 oral paper. Disclaimer This repository is te

Uber Research 622 Dec 26, 2022
Hydra: an Extensible Fuzzing Framework for Finding Semantic Bugs in File Systems

Hydra: An Extensible Fuzzing Framework for Finding Semantic Bugs in File Systems Paper Finding Semantic Bugs in File Systems with an Extensible Fuzzin

gts3.org (<a href=[email protected])"> 129 Dec 15, 2022
Open-L2O: A Comprehensive and Reproducible Benchmark for Learning to Optimize Algorithms

Open-L2O This repository establishes the first comprehensive benchmark efforts of existing learning to optimize (L2O) approaches on a number of proble

VITA 161 Jan 02, 2023