Official repository for "Exploiting Session Information in BERT-based Session-aware Sequential Recommendation", SIGIR 2022 short.

Related tags

Deep Learningpytorch
Overview

Session-aware BERT4Rec

Official repository for "Exploiting Session Information in BERT-based Session-aware Sequential Recommendation", SIGIR 2022 short.

Everything in the paper is implemented (including vanilla BERT4Rec and SASRec), and can be reproduced.

Usage

1. Build Docker

./scripts/build.sh

2. Download dataset

Download corresponding datasets into some directory, such as ./roughs.

For Steam dataset, use version 2.

Rename datasets: 'ml1m' for MovieLens-1M, 'ml20m' for MovieLens-2M, 'steam2' for Steam.

3. Preprocess

  • --rough_root: for original dataset files
  • --data_root: for processed data files
python preprocess.py prepare ml1m --data_root ./data --rough_root ./roughs
python preprocess.py prepare ml20m --data_root ./data --rough_root ./roughs
python preprocess.py prepare steam2 --data_root ./data --rough_root ./roughs

For some stats:

python preprocess.py count stats --data_root ./data --rough_root ./roughs > dstats.tsv

4. Run

See default configuration setting in entry.py.

To modify configuration, make some directory under runs/ like ./runs/ml1m/bert4rec/vanilla/, and create config.json.

Sample Run Script

My x0.sh file that uses GPU No. 0:

runpy () {
    docker run \
        -it \
        --rm \
        --init \
        --gpus '"device=0"' \
        --shm-size 16G \
        --volume="$HOME/.cache/torch:/root/.cache/torch" \
        --volume="$PWD:/workspace" \
        session-aware-bert4rec \
        python "$@"
}

runpy entry.py ml1m/bert4rec/vanilla

Terminologies

The df_ prefix always means DataFrame from Pandas.

  • uid (str|int): User ID (unique).
  • iid (str|int): Item ID (unique).
  • sid (str|int): Session ID (unique), used only for session separation.
  • uindex (int): mapped index number of User ID, 1 ~ n.
  • iindex (int): mapped index number of Item ID, 1 ~ m.
  • timestamp (int): UNIX timestamp.

Data Files

After preprocessing, we'll have followings in each data/:dataset_name/ directory.

  • uid2uindex.pkl (dict): {uiduindex}.
  • iid2iindex.pkl (dict): {iidiindex}.
  • df_rows.pkl (df): column of (uindex, iindex, sid, timestamp), with no index.
  • train.pkl (dict): {uindex → [list of (iindex, sid, timestamp)]}.
  • valid.pkl (dict): {uindex → [list of (iindex, sid, timestamp)]}.
  • test.pkl (dict): {uindex → [list of (iindex, sid, timestamp)]}.
  • ns_random.pkl (dict): {uindex -> [list of iindex]}.
  • ns_popular.pkl (dict): {uindex -> [list of iindex]}.

Code References

Implementation of CoCa, Contrastive Captioners are Image-Text Foundation Models, in Pytorch

CoCa - Pytorch Implementation of CoCa, Contrastive Captioners are Image-Text Foundation Models, in Pytorch. They were able to elegantly fit in contras

Phil Wang 565 Dec 30, 2022
Official PyTorch implementation of DD3D: Is Pseudo-Lidar needed for Monocular 3D Object detection? (ICCV 2021), Dennis Park*, Rares Ambrus*, Vitor Guizilini, Jie Li, and Adrien Gaidon.

DD3D: "Is Pseudo-Lidar needed for Monocular 3D Object detection?" Install // Datasets // Experiments // Models // License // Reference Full video Offi

Toyota Research Institute - Machine Learning 364 Dec 27, 2022
Diffusion Probabilistic Models for 3D Point Cloud Generation (CVPR 2021)

Diffusion Probabilistic Models for 3D Point Cloud Generation [Paper] [Code] The official code repository for our CVPR 2021 paper "Diffusion Probabilis

Shitong Luo 323 Jan 05, 2023
Implementation of FSGNN

FSGNN Implementation of FSGNN. For more details, please refer to our paper Experiments were conducted with following setup: Pytorch: 1.6.0 Python: 3.8

19 Dec 05, 2022
🚀 PyTorch Implementation of "Progressive Distillation for Fast Sampling of Diffusion Models(v-diffusion)"

PyTorch Implementation of "Progressive Distillation for Fast Sampling of Diffusion Models(v-diffusion)" Unofficial PyTorch Implementation of Progressi

Vitaliy Hramchenko 58 Dec 19, 2022
PyTorch implementation of DeepUME: Learning the Universal Manifold Embedding for Robust Point Cloud Registration (BMVC 2021)

DeepUME: Learning the Universal Manifold Embedding for Robust Point Cloud Registration [video] [paper] [supplementary] [data] [thesis] Introduction De

Natalie Lang 10 Dec 14, 2022
Code for "CloudAAE: Learning 6D Object Pose Regression with On-line Data Synthesis on Point Clouds" @ICRA2021

CloudAAE This is an tensorflow implementation of "CloudAAE: Learning 6D Object Pose Regression with On-line Data Synthesis on Point Clouds" Files log:

Gee 35 Nov 14, 2022
Fine-tuning StyleGAN2 for Cartoon Face Generation

Cartoon-StyleGAN 🙃 : Fine-tuning StyleGAN2 for Cartoon Face Generation Abstract Recent studies have shown remarkable success in the unsupervised imag

Jihye Back 520 Jan 04, 2023
This is an open source python repository for various python tests

Welcome to Py-tests This is an open source python repository for various python tests. This is in response to the hacktoberfest2021 challenge. It is a

Yada Martins Tisan 3 Oct 31, 2021
POCO: Point Convolution for Surface Reconstruction

POCO: Point Convolution for Surface Reconstruction by: Alexandre Boulch and Renaud Marlet Abstract Implicit neural networks have been successfully use

valeo.ai 93 Dec 29, 2022
Bootstrapped Unsupervised Sentence Representation Learning (ACL 2021)

Install first pip3 install -e . Training python3 training/unsupervised_tuning.py python3 training/supervised_tuning.py python3 training/multilingual_

yanzhang_nlp 26 Jul 22, 2022
The Power of Scale for Parameter-Efficient Prompt Tuning

The Power of Scale for Parameter-Efficient Prompt Tuning Implementation of soft embeddings from https://arxiv.org/abs/2104.08691v1 using Pytorch and H

Kip Parker 208 Dec 30, 2022
Official Implementation of 'UPDeT: Universal Multi-agent Reinforcement Learning via Policy Decoupling with Transformers' ICLR 2021(spotlight)

UPDeT Official Implementation of UPDeT: Universal Multi-agent Reinforcement Learning via Policy Decoupling with Transformers (ICLR 2021 spotlight) The

hhhusiyi 96 Dec 22, 2022
Seeing Dynamic Scene in the Dark: High-Quality Video Dataset with Mechatronic Alignment (ICCV2021)

Seeing Dynamic Scene in the Dark: High-Quality Video Dataset with Mechatronic Alignment This is a pytorch project for the paper Seeing Dynamic Scene i

DV Lab 21 Nov 28, 2022
Source code, data, and evaluation details for “Cross-Lingual Citations in English Papers: A Large-Scale Analysis of Prevalence, Formation, and Ramifications”

Analysis of cross-lingual citations in English papers Contents initial_analysis Source code, data, and evaluation details as published at ICADL2020 ci

Tarek Saier 1 Oct 27, 2022
Provide partial dates and retain the date precision through processing

Prefix date parser This is a helper class to parse dates with varied degrees of precision. For example, a data source might state a date as 2001, 2001

Friedrich Lindenberg 13 Dec 14, 2022
Miscellaneous and lightweight network tools

Network Tools Collection of miscellaneous and lightweight network tools to simplify daily operations, administration, and troubleshooting of networks.

Nicholas Russo 22 Mar 22, 2022
Unsupervised Semantic Segmentation by Contrasting Object Mask Proposals.

Unsupervised Semantic Segmentation by Contrasting Object Mask Proposals This repo contains the Pytorch implementation of our paper: Unsupervised Seman

Wouter Van Gansbeke 335 Dec 28, 2022
A light-weight image labelling tool for Python designed for creating segmentation data sets.

An image labelling tool for creating segmentation data sets, for Django and Flask.

117 Nov 21, 2022
Code associated with the paper "Deep Optics for Single-shot High-dynamic-range Imaging"

Deep Optics for Single-shot High-dynamic-range Imaging Code associated with the paper "Deep Optics for Single-shot High-dynamic-range Imaging" CVPR, 2

Stanford Computational Imaging Lab 40 Dec 12, 2022