CAST: Character labeling in Animation using Self-supervision by Tracking

Related tags

Deep LearningCAST
Overview

CAST: Character labeling in Animation using Self-supervision by Tracking

(Published as a conference paper at EuroGraphics 2022)

Note: The CAST paper code, evaluation dataset, and models are to be stored here soon. Authors: Oron Nir, Gal Rapoport, and Ariel Shamir All technical details are available on the paper.

For more details reach out to oronnir11 at gmail dot com

Abstract

Cartoons and animation domain videos have very different characteristics compared to real-life images and videos. In addition, this domain carries a large variability in styles. Current computer vision and deep-learning solutions often fail on animated content because they were trained on natural images. In this paper we present a method to refine a semantic representation suitable for specific animated content. We first train a neural network on a large-scale set of animation videos and use the mapping to deep features as an embedding space. Next, we use self-supervision to refine the representation for any specific animation style by gathering many examples of animated characters in this style, using a multi-object tracking. These examples are used to define triplets for contrastive loss training. The refined semantic space allows better clustering of animated characters even when they have diverse manifestations. Using this space we can build dictionaries of characters in an animation videos, and define specialized classifiers for specific stylistic content (e.g.,\ characters in a specific animation series) with very little user effort. These classifiers are the basis for automatically labeling characters in animation videos. We present results on a collection of characters in a variety of animation styles.

The pipeline below illustrates the major components. These steps are available in the E2E scripts. CAST Pipeline

#Supported E2E flows: Here are the corresponding endpoint scripts (Python 3.7.9).

1. main_1.py Input: mp4, output: triplets (Windows).
   1.1. Split the video to shots.
   1.2. Sample frames.
   1.3. Run detector and vanilla embeddings.
   1.4. Run a Multi-Object Tracker per shot.
   1.5. Sample triplets. 
2. tuner_data_preper_2.py and anchor_triplets_json_2.py (Windows).
   2.1. Generate triplets with corresponding images for finetune.
   2.2. Prepare the JSON file with the bounding boxes to later embed using the finetuned model. 
3. fine_tune_series_3.py Triplets contrastive finetune (Linux).
   3.1. Run the finetune flow.
   3.2. Use the tuned model to better embed the bounding boxes.
4. cluster_4.py Grouping (Windows).
   4.1. Cluster the embedded boxes and find the cluster center/exemplar.
   4.2. Visualize with collages.

Other evaluation and visualization scripts that were developed towards EuroGraphics submission are also provided here.

#Citation Please cite our paper with the following bibtex:

@misc{nir2022cast,
      title={CAST: Character labeling in Animation using Self-supervision by Tracking}, 
      author={Oron Nir and Gal Rapoport and Ariel Shamir},
      year={2022},
      eprint={2201.07619},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
Neural networks applied in recognizing guitar chords using python, AutoML.NET with C# and .NET Core

Chord Recognition Demo application The demo application is written in C# with .NETCore. As of July 9, 2020, the only version available is for windows

Andres Mauricio Rondon Patiรฑo 24 Oct 22, 2022
StocksMA is a package to facilitate access to financial and economic data of Moroccan stocks.

Creating easier access to the Moroccan stock market data What is StocksMA ? StocksMA is a package to facilitate access to financial and economic data

Salah Eddine LABIAD 28 Jan 04, 2023
Solving Zero-Shot Learning in Named Entity Recognition with Common Sense Knowledge

Zero-Shot Learning in Named Entity Recognition with Common Sense Knowledge Associated code for the paper Zero-Shot Learning in Named Entity Recognitio

Sรธren Hougaard Mulvad 13 Dec 25, 2022
This repo contains code to reproduce all experiments in Equivariant Neural Rendering

Equivariant Neural Rendering This repo contains code to reproduce all experiments in Equivariant Neural Rendering by E. Dupont, M. A. Bautista, A. Col

Apple 83 Nov 16, 2022
Official implementation of the method ContIG, for self-supervised learning from medical imaging with genomics

ContIG: Self-supervised Multimodal Contrastive Learning for Medical Imaging with Genetics This is the code implementation of the paper "ContIG: Self-s

Digital Health & Machine Learning 22 Dec 13, 2022
Alpha-IoU: A Family of Power Intersection over Union Losses for Bounding Box Regression

Alpha-IoU: A Family of Power Intersection over Union Losses for Bounding Box Regression YOLOv5 with alpha-IoU losses implemented in PyTorch. Example r

Jacobi(Jiabo He) 147 Dec 05, 2022
clustimage is a python package for unsupervised clustering of images.

clustimage The aim of clustimage is to detect natural groups or clusters of images. Image recognition is a computer vision task for identifying and ve

Erdogan Taskesen 52 Jan 02, 2023
Implementation of FitVid video prediction model in JAX/Flax.

FitVid Video Prediction Model Implementation of FitVid video prediction model in JAX/Flax. If you find this code useful, please cite it in your paper:

Google Research 62 Nov 25, 2022
[arXiv] What-If Motion Prediction for Autonomous Driving โ“๐Ÿš—๐Ÿ’จ

WIMP - What If Motion Predictor Reference PyTorch Implementation for What If Motion Prediction [PDF] [Dynamic Visualizations] Setup Requirements The W

William Qi 96 Dec 29, 2022
(AAAI 2021) Progressive One-shot Human Parsing

End-to-end One-shot Human Parsing This is the official repository for our two papers: Progressive One-shot Human Parsing (AAAI 2021) End-to-end One-sh

54 Dec 30, 2022
TCPNet - Temporal-attentive-Covariance-Pooling-Networks-for-Video-Recognition

Temporal-attentive-Covariance-Pooling-Networks-for-Video-Recognition This is an implementation of TCPNet. Introduction For video recognition task, a g

Zilin Gao 21 Dec 08, 2022
buildseg is a building extraction plugin of QGIS based on PaddlePaddle.

buildseg buildseg is a Building Extraction plugin for QGIS based on PaddlePaddle. How to use Download and install QGIS and clone the repo : git clone

39 Dec 09, 2022
Auto White-Balance Correction for Mixed-Illuminant Scenes

Auto White-Balance Correction for Mixed-Illuminant Scenes Mahmoud Afifi, Marcus A. Brubaker, and Michael S. Brown York University Video Reference code

Mahmoud Afifi 47 Nov 26, 2022
FwordCTF 2021 Infrastructure and Source code of Web/Bash challenges

FwordCTF 2021 You can find here the source code of the challenges I wrote (Web and Bash) in FwordCTF 2021 and the source code of the platform with our

Kahla 5 Nov 25, 2022
Code release for NeX: Real-time View Synthesis with Neural Basis Expansion

NeX: Real-time View Synthesis with Neural Basis Expansion Project Page | Video | Paper | COLAB | Shiny Dataset We present NeX, a new approach to novel

538 Jan 09, 2023
GAN Image Generator and Characterwise Image Recognizer with python

MODEL SUMMARY ๋ชจ๋ธ์˜ ๊ตฌ์กฐ๋Š” ํฌ๊ฒŒ 6๋‹จ๊ณ„๋กœ ๋‚˜๋‰ฉ๋‹ˆ๋‹ค. STEP 0: Input Image Predict ํ•  ์ด๋ฏธ์ง€๋ฅผ ๋ชจ๋ธ์— ์ž…๋ ฅํ•ฉ๋‹ˆ๋‹ค. STEP 1: Make Black and White Image STEP 1 ์€ ์ž…๋ ฅ๋ฐ›์€ ์ด๋ฏธ์ง€์˜ ๊ธ€์ž๋ฅผ ํ‘์ƒ‰์œผ๋กœ, ๋ฐฐ๊ฒฝ์„

Juwan HAN 1 Feb 09, 2022
An interpreter for RASP as described in the ICML 2021 paper "Thinking Like Transformers"

RASP Setup Mac or Linux Run ./setup.sh . It will create a python3 virtual environment and install the dependencies for RASP. It will also try to insta

141 Jan 03, 2023
ShuttleNet: Position-aware Fusion of Rally Progress and Player Styles for Stroke Forecasting in Badminton (AAAI'22)

ShuttleNet: Position-aware Rally Progress and Player Styles Fusion for Stroke Forecasting in Badminton (AAAI 2022) Official code of the paper ShuttleN

Wei-Yao Wang 11 Nov 30, 2022
Companion code for the paper "An Infinite-Feature Extension for Bayesian ReLU Nets That Fixes Their Asymptotic Overconfidence" (NeurIPS 2021)

ReLU-GP Residual (RGPR) This repository contains code for reproducing the following NeurIPS 2021 paper: @inproceedings{kristiadi2021infinite, title=

Agustinus Kristiadi 4 Dec 26, 2021
Neural Dynamic Policies for End-to-End Sensorimotor Learning

This is a PyTorch based implementation for our NeurIPS 2020 paper on Neural Dynamic Policies for end-to-end sensorimotor learning.

Shikhar Bahl 47 Dec 11, 2022