pandas, scikit-learn, xgboost and seaborn integration

Overview

pandas-ml

Latest Docs https://travis-ci.org/pandas-ml/pandas-ml.svg?branch=master

Overview

pandas, scikit-learn and xgboost integration.

Installation

$ pip install pandas_ml

Documentation

http://pandas-ml.readthedocs.org/en/stable/

Example

>>> import pandas_ml as pdml
>>> import sklearn.datasets as datasets

# create ModelFrame instance from sklearn.datasets
>>> df = pdml.ModelFrame(datasets.load_digits())
>>> type(df)
<class 'pandas_ml.core.frame.ModelFrame'>

# binarize data (features), not touching target
>>> df.data = df.data.preprocessing.binarize()
>>> df.head()
   .target  0  1  2  3  4  5  6  7  8 ...  54  55  56  57  58  59  60  61  62  63
0        0  0  0  1  1  1  1  0  0  0 ...   0   0   0   0   1   1   1   0   0   0
1        1  0  0  0  1  1  1  0  0  0 ...   0   0   0   0   0   1   1   1   0   0
2        2  0  0  0  1  1  1  0  0  0 ...   1   0   0   0   0   1   1   1   1   0
3        3  0  0  1  1  1  1  0  0  0 ...   1   0   0   0   1   1   1   1   0   0
4        4  0  0  0  1  1  0  0  0  0 ...   0   0   0   0   0   1   1   1   0   0
[5 rows x 65 columns]

# split to training and test data
>>> train_df, test_df = df.model_selection.train_test_split()

# create estimator (accessor is mapped to sklearn namespace)
>>> estimator = df.svm.LinearSVC()

# fit to training data
>>> train_df.fit(estimator)

# predict test data
>>> test_df.predict(estimator)
0     4
1     2
2     7
...
448    5
449    8
Length: 450, dtype: int64

# Evaluate the result
>>> test_df.metrics.confusion_matrix()
Predicted   0   1   2   3   4   5   6   7   8   9
Target
0          52   0   0   0   0   0   0   0   0   0
1           0  37   1   0   0   1   0   0   3   3
2           0   2  48   1   0   0   0   1   1   0
3           1   1   0  44   0   1   0   0   3   1
4           1   0   0   0  43   0   1   0   0   0
5           0   1   0   0   0  39   0   0   0   0
6           0   1   0   0   1   0  35   0   0   0
7           0   0   0   0   2   0   0  42   1   0
8           0   2   1   0   1   0   0   0  33   1
9           0   2   1   2   0   0   0   0   1  38

Supported Packages

  • scikit-learn
  • patsy
  • xgboost
Comments
  • Fixed imports of deprecated modules which were removed in pandas 0.24.0

    Fixed imports of deprecated modules which were removed in pandas 0.24.0

    Certain functions were deprecated in a previous version of pandas and moved to a different module (see #117). This PR fixes the imports of those functions.

    opened by kristofve 8
  • REL: v0.4.0

    REL: v0.4.0

    • [x] Compat/test for sklearn 0.18.0 (#81)
      • [x] initial fix (#81)
      • [x] wrapper for cross validation classes (re-enable skipped tests) (#85)
      • [x] tests for multioutput (#86)
      • [x] Update doc
    • [x] Compat/test for pandas 0.19.0 (#83)
    • [x] Update release note (#88)
    opened by sinhrks 4
  • Importation error

    Importation error

    I tried to import pandas_ml but it gave the error :

    AttributeError: type object 'NDFrame' has no attribute 'groupby'

    I'm running python3.8.1 and I installed pandas_ml via pip (version 20.0.2)

    I dig in the code, error is l.80 of file series.py

    @Appender(pd.core.generic.NDFrame.groupby.__doc__)

    Here pandas is imported at the top of the file with a classic import pandas as pd

    I guess there is a problem with the versions...

    Thanks in advance for any help

    opened by ierezell 2
  • Confusion Matrix no accessible

    Confusion Matrix no accessible

    Hi,

    I've been using confusion_matrix since it was an independent package. I've installed pandas_ml to continue using the package, but it seems that the setup.py script does not install the package.

    Could it be an issue with the find_packages function?

    opened by mmartinortiz 2
  • Seaborn Scatterplot matrix / pairplot integration

    Seaborn Scatterplot matrix / pairplot integration

    import seaborn as sns
    sns.set()
    
    df = sns.load_dataset("iris")
    sns.pairplot(df, hue="species")
    

    displays

    iris_scatter_matrix

    but pairplot doesn't work the same way with ModelFrame

    import pandas as pd
    pd.set_option('max_rows', 10)
    import sklearn.datasets as datasets
    import pandas_ml as pdml  # https://github.com/pandas-ml/pandas-ml
    import seaborn as sns
    import matplotlib.pyplot as plt
    df = pdml.ModelFrame(datasets.load_iris())
    sns.pairplot(df, hue=".target")
    

    iris_modelframe

    There is some useless subplots

    opened by scls19fr 2
  • Error while running train.py from speech commands in tensorflow examples.

    Error while running train.py from speech commands in tensorflow examples.

    Have the following error: File "train.py", line 27, in <module> from callbacks import ConfusionMatrixCallback File "/home/tesseract/ayush_workspace/NLP/WakeWord/tensorflow_trainer/ml/callbacks.py", line 21, in <module> from pandas_ml import ConfusionMatrix File "/home/tesseract/anaconda3/envs/ciao/lib/python3.6/site-packages/pandas_ml/__init__.py", line 3, in <module> from pandas_ml.core import ModelFrame, ModelSeries # noqa File "/home/tesseract/anaconda3/envs/ciao/lib/python3.6/site-packages/pandas_ml/core/__init__.py", line 3, in <module> from pandas_ml.core.frame import ModelFrame # noqa File "/home/tesseract/anaconda3/envs/ciao/lib/python3.6/site-packages/pandas_ml/core/frame.py", line 18, in <module> from pandas_ml.core.series import ModelSeries File "/home/tesseract/anaconda3/envs/ciao/lib/python3.6/site-packages/pandas_ml/core/series.py", line 11, in <module> class ModelSeries(ModelTransformer, pd.Series): File "/home/tesseract/anaconda3/envs/ciao/lib/python3.6/site-packages/pandas_ml/core/series.py", line 80, in ModelSeries @Appender(pd.core.generic.NDFrame.groupby.__doc__) AttributeError: type object 'NDFrame' has no attribute 'groupby' Happening with both version 5 and 6.1

    opened by ayush7 1
  • error for example https://pandas-ml.readthedocs.io/en/latest/xgboost.html

    error for example https://pandas-ml.readthedocs.io/en/latest/xgboost.html

    code from example https://pandas-ml.readthedocs.io/en/latest/xgboost.html '''import pandas_ml as pdml import sklearn.datasets as datasets df = pdml.ModelFrame(datasets.load_digits()) train_df, test_df = df.cross_validation.train_test_split() estimator = df.xgboost.XGBClassifier() train_df.fit(estimator) predicted = test_df.predict(estimator) q=1 test_df.metrics.confusion_matrix() train_df.xgboost.plot_importance()

    tuned_parameters = [{'max_depth': [3, 4]}] cv = df.grid_search.GridSearchCV(df.xgb.XGBClassifier(), tuned_parameters, cv=5)

    df.fit(cv) df.grid_search.describe(cv) q=1

    '''

    gives error ''' File "E:\Pandas\my_code\S_pandas_ml_feb27.py", line 10, in train_df.xgboost.plot_importance() File "C:\Users\sndr\Anaconda3\Lib\site-packages\pandas_ml\xgboost\base.py", line 61, in plot_importance return xgb.plot_importance(self._df.estimator.booster(),

    builtins.TypeError: 'str' object is not callable ''' I use Windows and 3.6.4 |Anaconda, Inc.| (default, Jan 16 2018, 10:22:32) [MSC v.1900 64 bit (AMD64)] Python Type "help", "copyright", "credits" or "license" for more information.

    opened by Sandy4321 1
  • pandas 0.24.0 has deprecated pandas.util.decorators

    pandas 0.24.0 has deprecated pandas.util.decorators

    See https://pandas.pydata.org/pandas-docs/stable/whatsnew/v0.24.0.html#deprecations

    This causes the import statement in https://github.com/pandas-ml/pandas-ml/blob/master/pandas_ml/core/frame.py to break.

    Looks like just need to change it to 'from pandas.utils'

    opened by usul83 1
  • 'mean_absoloute_error

    'mean_absoloute_error

    from sklearn import metrics print('MAE:',metrics.mean_absoloute_error(y_test,y_pred)) module 'sklearn.metrics' has no attribute 'mean_absoloute_error This error is occurred..any solution

    opened by vikramk1507 0
  • AttributeError: type object 'NDFrame' has no attribute 'groupby'

    AttributeError: type object 'NDFrame' has no attribute 'groupby'

    AttributeError: type object 'NDFrame' has no attribute 'groupby'

    from pandas_ml import ConfusionMatrix cm = ConfusionMatrix(actu, pred) cm.print_stats()


    AttributeError Traceback (most recent call last) in ----> 1 from pandas_ml import confusion_matrix 2 3 cm = ConfusionMatrix(actu, pred) 4 cm.print_stats()

    /usr/local/lib/python3.8/site-packages/pandas_ml/init.py in 1 #!/usr/bin/env python 2 ----> 3 from pandas_ml.core import ModelFrame, ModelSeries # noqa 4 from pandas_ml.tools import info # noqa 5 from pandas_ml.version import version as version # noqa

    /usr/local/lib/python3.8/site-packages/pandas_ml/core/init.py in 1 #!/usr/bin/env python 2 ----> 3 from pandas_ml.core.frame import ModelFrame # noqa 4 from pandas_ml.core.series import ModelSeries # noqa

    /usr/local/lib/python3.8/site-packages/pandas_ml/core/frame.py in 16 from pandas_ml.core.accessor import _AccessorMethods 17 from pandas_ml.core.generic import ModelPredictor, _shared_docs ---> 18 from pandas_ml.core.series import ModelSeries 19 20

    /usr/local/lib/python3.8/site-packages/pandas_ml/core/series.py in 9 10 ---> 11 class ModelSeries(ModelTransformer, pd.Series): 12 """ 13 Wrapper for pandas.Series to support sklearn.preprocessing

    /usr/local/lib/python3.8/site-packages/pandas_ml/core/series.py in ModelSeries() 78 return df 79 ---> 80 @Appender(pd.core.generic.NDFrame.groupby.doc) 81 def groupby(self, by=None, axis=0, level=None, as_index=True, sort=True, 82 group_keys=True, squeeze=False):

    AttributeError: type object 'NDFrame' has no attribute 'groupby'

    opened by gfranco008 5
  • AttributeError: module 'sklearn.metrics' has no attribute 'jaccard_similarity_score'

    AttributeError: module 'sklearn.metrics' has no attribute 'jaccard_similarity_score'

    I am using scikit-learn version 0.23.1 and I get the following error: AttributeError: module 'sklearn.metrics' has no attribute 'jaccard_similarity_score' when calling the function ConfusionMatrix.

    opened by petraknovak 11
  • Error while running train.py from speech commands in tensorflow examples. AttributeError: type object 'NDFrame' has no attribute 'groupby'

    Error while running train.py from speech commands in tensorflow examples. AttributeError: type object 'NDFrame' has no attribute 'groupby'

    Have the following error: File "train.py", line 27, in <module> from callbacks import ConfusionMatrixCallback File "/home/tesseract/ayush_workspace/NLP/WakeWord/tensorflow_trainer/ml/callbacks.py", line 21, in <module> from pandas_ml import ConfusionMatrix File "/home/tesseract/anaconda3/envs/ciao/lib/python3.6/site-packages/pandas_ml/__init__.py", line 3, in <module> from pandas_ml.core import ModelFrame, ModelSeries # noqa File "/home/tesseract/anaconda3/envs/ciao/lib/python3.6/site-packages/pandas_ml/core/__init__.py", line 3, in <module> from pandas_ml.core.frame import ModelFrame # noqa File "/home/tesseract/anaconda3/envs/ciao/lib/python3.6/site-packages/pandas_ml/core/frame.py", line 18, in <module> from pandas_ml.core.series import ModelSeries File "/home/tesseract/anaconda3/envs/ciao/lib/python3.6/site-packages/pandas_ml/core/series.py", line 11, in <module> class ModelSeries(ModelTransformer, pd.Series): File "/home/tesseract/anaconda3/envs/ciao/lib/python3.6/site-packages/pandas_ml/core/series.py", line 80, in ModelSeries @Appender(pd.core.generic.NDFrame.groupby.__doc__) AttributeError: type object 'NDFrame' has no attribute 'groupby' Happening with both version 5 and 6.1

    opened by ayush7 3
  • Pandas 1.0.0rc0/0.6.1 module 'sklearn.preprocessing' has no attribute 'Imputer'

    Pandas 1.0.0rc0/0.6.1 module 'sklearn.preprocessing' has no attribute 'Imputer'

    SKLEARN

    sklearn.preprocessing.Imputer Warning DEPRECATED

    class sklearn.preprocessing.Imputer(*args, **kwargs)[source] Imputation transformer for completing missing values.

    Read more in the User Guide.

    
    ---------------------------------------------------------------------------
    AttributeError                            Traceback (most recent call last)
    <ipython-input-1-e0471065d85c> in <module>
          1 import pandas as pd
          2 import numpy as np
    ----> 3 import pandas_ml as pdml
          4 a1 = np.random.randint(0,2,size=(100,2))
          5 df = pd.DataFrame(a1,columns=['i1','i2'])
    
    C:\g\test\lib\pandas_ml\__init__.py in <module>
          1 #!/usr/bin/env python
          2 
    ----> 3 from pandas_ml.core import ModelFrame, ModelSeries       # noqa
          4 from pandas_ml.tools import info                         # noqa
          5 from pandas_ml.version import version as __version__     # noqa
    
    C:\g\test\lib\pandas_ml\core\__init__.py in <module>
          1 #!/usr/bin/env python
          2 
    ----> 3 from pandas_ml.core.frame import ModelFrame       # noqa
          4 from pandas_ml.core.series import ModelSeries     # noqa
    
    C:\g\test\lib\pandas_ml\core\frame.py in <module>
          8 
          9 import pandas_ml.imbaccessors as imbaccessors
    ---> 10 import pandas_ml.skaccessors as skaccessors
         11 import pandas_ml.smaccessors as smaccessors
         12 import pandas_ml.snsaccessors as snsaccessors
    
    C:\g\test\lib\pandas_ml\skaccessors\__init__.py in <module>
         17 from pandas_ml.skaccessors.neighbors import NeighborsMethods                      # noqa
         18 from pandas_ml.skaccessors.pipeline import PipelineMethods                        # noqa
    ---> 19 from pandas_ml.skaccessors.preprocessing import PreprocessingMethods              # noqa
         20 from pandas_ml.skaccessors.svm import SVMMethods                                  # noqa
    
    C:\g\test\lib\pandas_ml\skaccessors\preprocessing.py in <module>
         11     _keep_col_classes = [pp.Binarizer,
         12                          pp.FunctionTransformer,
    ---> 13                          pp.Imputer,
         14                          pp.KernelCenterer,
         15                          pp.LabelEncoder,
    
    AttributeError: module 'sklearn.preprocessing' has no attribute 'Imputer'
    
    opened by apiszcz 11
Releases(v0.6.1)
A simple application that calculates the probability distribution of a normal distribution

probability-density-function General info An application that calculates the probability density and cumulative distribution of a normal distribution

1 Oct 25, 2022
Distributed Deep learning with Keras & Spark

Elephas: Distributed Deep Learning with Keras & Spark Elephas is an extension of Keras, which allows you to run distributed deep learning models at sc

Max Pumperla 1.6k Dec 29, 2022
Firebase + Cloudrun + Machine learning

A simple end to end consumer lending decision engine powered by Google Cloud Platform (firebase hosting and cloudrun)

Emmanuel Ogunwede 8 Aug 16, 2022
Cryptocurrency price prediction and exceptions in python

Cryptocurrency price prediction and exceptions in python This is a coursework on foundations of computing module Through this coursework i worked on m

Panagiotis Sotirellos 1 Nov 07, 2021
BASTA: The BAyesian STellar Algorithm

BASTA: BAyesian STellar Algorithm Current stable version: v1.0 Important note: BASTA is developed for Python 3.8, but Python 3.7 should work as well.

BASTA team 16 Nov 15, 2022
Simple, fast, and parallelized symbolic regression in Python/Julia via regularized evolution and simulated annealing

Parallelized symbolic regression built on Julia, and interfaced by Python. Uses regularized evolution, simulated annealing, and gradient-free optimization.

Miles Cranmer 924 Jan 03, 2023
Traingenerator 🧙 A web app to generate template code for machine learning ✨

Traingenerator 🧙 A web app to generate template code for machine learning ✨ 🎉 Traingenerator is now live! 🎉

Johannes Rieke 1.2k Jan 07, 2023
MegFlow - Efficient ML solutions for long-tailed demands.

Efficient ML solutions for long-tailed demands.

旷视天元 MegEngine 371 Dec 21, 2022
Mosec is a high-performance and flexible model serving framework for building ML model-enabled backend and microservices

Mosec is a high-performance and flexible model serving framework for building ML model-enabled backend and microservices. It bridges the gap between any machine learning models you just trained and t

164 Jan 04, 2023
Probabilistic programming framework that facilitates objective model selection for time-varying parameter models.

Time series analysis today is an important cornerstone of quantitative science in many disciplines, including natural and life sciences as well as eco

Christoph Mark 129 Dec 24, 2022
🌊 River is a Python library for online machine learning.

River is a Python library for online machine learning. It is the result of a merger between creme and scikit-multiflow. River's ambition is to be the go-to library for doing machine learning on strea

OnlineML 4k Jan 03, 2023
hgboost - Hyperoptimized Gradient Boosting

hgboost is short for Hyperoptimized Gradient Boosting and is a python package for hyperparameter optimization for xgboost, catboost and lightboost using cross-validation, and evaluating the results o

Erdogan Taskesen 34 Jan 03, 2023
K-Means clusternig example with Python and Scikit-learn

Unsupervised-Machine-Learning Flat Clustering K-Means clusternig example with Python and Scikit-learn Flat clustering Clustering algorithms group a se

Emin 1 Dec 13, 2021
Machine Learning for RC Cars

Suiron Machine Learning for RC Cars Prediction visualization (green = actual, blue = prediction) Click the video below to see it in action! Dependenci

Kendrick Tan 706 Jan 02, 2023
🎛 Distributed machine learning made simple.

🎛 lazycluster Distributed machine learning made simple. Use your preferred distributed ML framework like a lazy engineer. Getting Started • Highlight

Machine Learning Tooling 44 Nov 27, 2022
Random Forest Classification for Neural Subtypes

Random Forest classifier for neural subtypes extracted from extracellular recordings from human brain organoids.

Michael Zabolocki 1 Jan 31, 2022
machine learning model deployment project of Iris classification model in a minimal UI using flask web framework and deployed it in Azure cloud using Azure app service

This is a machine learning model deployment project of Iris classification model in a minimal UI using flask web framework and deployed it in Azure cloud using Azure app service. We initially made th

Krishna Priyatham Potluri 73 Dec 01, 2022
stability-selection - A scikit-learn compatible implementation of stability selection

stability-selection - A scikit-learn compatible implementation of stability selection stability-selection is a Python implementation of the stability

185 Dec 03, 2022
A pure-python implementation of the UpSet suite of visualisation methods by Lex, Gehlenborg et al.

pyUpSet A pure-python implementation of the UpSet suite of visualisation methods by Lex, Gehlenborg et al. Contents Purpose How to install How it work

288 Jan 04, 2023
Scikit-Learn useful pre-defined Pipelines Hub

Scikit-Pipes Scikit-Learn useful pre-defined Pipelines Hub Usage: Install scikit-pipes It's advised to install sklearn-genetic using a virtual env, in

Rodrigo Arenas 1 Apr 26, 2022