Python PostgreSQL adapter to stream results of multi-statement queries without a server-side cursor

Overview

streampq CircleCI Test Coverage

Stream results of multi-statement PostgreSQL queries from Python without server-side cursors. Has benefits over some other Python PostgreSQL libraries:

  • Streams results from complex multi-statement queries even though SQL doesn't allow server-side cursors for such queries - suitable for large amounts of results that don't fit in memory.

  • CTRL+C (SIGINT) by default behaves as expected even during slow queries - a KeyboardInterrupt is raised and quickly bubbles up through streampq code. Unless client code prevents it, the program will exit.

  • Every effort is made to cancel queries on KeyboardInterrupt, SystemExit, or errors - the server doesn't continue needlessly using resources.

Particularly useful when temporary tables are needed to store intermediate results in multi-statement SQL scripts.

Installation

pip install streampq

The libpq binary library is also required. This is typically either already installed, or installed by:

  • macOS + brew: brew install libpq
  • Linux (Debian): apt install libpq5
  • Linux (Red Hat):yum install postgresql-libs

The only runtime dependencies are libpq and Python itself.

Usage

from streampq import streampq_connect

# libpq connection paramters
# https://www.postgresql.org/docs/current/libpq-connect.html#LIBPQ-PARAMKEYWORDS
#
# Any can be ommitted and environment variables will be used instead
# https://www.postgresql.org/docs/current/libpq-envars.html
connection_params = (
    ('host', 'localhost'),
    ('port', '5432'),
    ('dbname', 'postgres'),
    ('user', 'postgres'),
    ('password', 'password'),
)

# SQL statement(s) - if more than one, separate by ;
sql = '''
    SELECT * FROM my_table;
    SELECT * FROM my_other_table;
'''

# Connection and querying is via a context manager
with streampq_connect(connection_params) as query:
    for (columns, rows) in query(sql):
        print(columns)  # Tuple of column names
        for row in rows:
            print(row)  # Tuple of row  values

PostgreSQL types to Python type decoding

There are 164 built-in PostgreSQL data types (including array types), and streampq converts them to Python types. In summary:

PostgreSQL types Python type
null None
text (e.g. varchar), xml, network addresses, and money str
byte (e.g. bytea) bytes
integer (e.g. int4) int
inexact real number (e.g. float4) float
exact real number (e.g. numeric) Decimal
date date
timestamp datetime (without timezone)
timestamptz datetime (with offset timezone)
json and jsonb output of json.loads
interval streampq.Interval
range (e.g. daterange) streampq.Range
multirange (e.g. datemultirange) tuples of streampq.Range
arrays and vectors tuple (of any of the above types, or of nested tuples)

To customise these, override the default value of the get_decoders parameter of the streampq_connect function in streampq.py.

In general, built-in types are preferred over custom types, and immutable types are preferred over mutable.

streampq.Interval

The Python built-in timedelta type is not used for PostgreSQL interval since timedelta does not offer a way to store PostgreSQL intervals of years or months, other than converting to days which would be a loss of information.

Instead, a namedtuple is defined, streampq.Interval, with members:

Member Type
years int
months int
days int
hours int
minutes int
seconds Decimal

streampq.Range

There is no Python built-in type for a PosgreSQL range. So for these, a namedtuple is defined, streampq.Range, with members:

Member Type
lower int, date, datetime (without timezone), or datetime (with offset timezone)
upper int, date, datetime (without timezone), or datetime (with offset timezone)
bounds str - one of (), (], [), or []

Bind parameters - literals

Dynamic SQL literals can be bound using the literals parameter of the query function. It must be an iterable of key-value pairs.

sql = '''
    SELECT * FROM my_table WHERE my_col = {my_col_value};
'''

with streampq_connect(connection_params) as query:
    for (columns, rows) in query(sql, literals=(
        ('my_col_value', 'my-value'),
    )):
        for row in rows:
            pass

Bind parameters - identifiers

Dynamic SQL identifiers, e.g. column names, can be bound using the identifiers parameter of the query function. It must be an iterable of key-value pairs.

sql = '''
    SELECT * FROM my_table WHERE {column_name} = 'my-value';
'''

with streampq_connect(connection_params) as query:
    for (columns, rows) in query(sql, identifiers=(
        ('column_name', 'my_col'),
    )):
        for row in rows:
            pass

Identifiers and literals use different escaping rules - hence the need for 2 different parameters.

Single-statement SQL queries

While this library is specialsed for multi-statement queries, it works fine when there is only one. In this case the iterable returned from the query function yields only a single (columns, rows) pair.

Exceptions

Exceptions derive from streampq.StreamPQError. If there is any more information available on the error, it's added as a string in its args property. This is included in the string representation of the exception by default.

Exception hierarchy

  • StreamPQError

    Base class for all explicitly-thrown exceptions

    • ConnectionError

      An error occurred while attempting to connect to the database.

    • QueryError

      An error occurred while attempting to run a query. Typically this is due to a syntax error or a missing column.

    • CancelError

      An error occurred while attempting to cancel a query.

    • CommunicationError

      An error occurred communicating with the database after successful connection.

Owner
Department for International Trade
Department for International Trade
python-beryl, a Python driver for BerylDB.

python-beryl, a Python driver for BerylDB.

BerylDB 3 Nov 24, 2021
Google Sheets Python API v4

pygsheets - Google Spreadsheets Python API v4 A simple, intuitive library for google sheets which gets your work done. Features: Open, create, delete

Nithin Murali 1.4k Dec 31, 2022
The Database Toolkit for Python

SQLAlchemy The Python SQL Toolkit and Object Relational Mapper Introduction SQLAlchemy is the Python SQL toolkit and Object Relational Mapper that giv

SQLAlchemy 6.5k Jan 01, 2023
PyRemoteSQL is a python SQL client that allows you to connect to your remote server with phpMyAdmin installed.

PyRemoteSQL Python MySQL remote client Basically this is a python SQL client that allows you to connect to your remote server with phpMyAdmin installe

ProbablyX 3 Nov 04, 2022
asyncio (PEP 3156) Redis support

aioredis asyncio (PEP 3156) Redis client library. Features hiredis parser Yes Pure-python parser Yes Low-level & High-level APIs Yes Connections Pool

aio-libs 2.2k Jan 04, 2023
MySQLdb is a Python DB API-2.0 compliant library to interact with MySQL 3.23-5.1 (unofficial mirror)

==================== MySQLdb Installation ==================== .. contents:: .. Prerequisites ------------- + Python 2.3.4 or higher * http://ww

Sébastien Arnaud 17 Oct 10, 2021
Estoult - a Python toolkit for data mapping with an integrated query builder for SQL databases

Estoult Estoult is a Python toolkit for data mapping with an integrated query builder for SQL databases. It currently supports MySQL, PostgreSQL, and

halcyon[nouveau] 15 Dec 29, 2022
pandas-gbq is a package providing an interface to the Google BigQuery API from pandas

pandas-gbq pandas-gbq is a package providing an interface to the Google BigQuery API from pandas Installation Install latest release version via conda

Google APIs 348 Jan 03, 2023
Redis Python Client - The Python interface to the Redis key-value store.

redis-py The Python interface to the Redis key-value store. Installation | Contributing | Getting Started | Connecting To Redis Installation redis-py

Redis 11k Jan 08, 2023
A simple wrapper to make a flat file drop in raplacement for mongodb out of TinyDB

Purpose A simple wrapper to make a drop in replacement for mongodb out of tinydb. This module is an attempt to add an interface familiar to those curr

180 Jan 01, 2023
Pure-python PostgreSQL driver

pg-purepy pg-purepy is a pure-Python PostgreSQL wrapper based on the anyio library. A lot of this library was inspired by the pg8000 library. Credits

Lura Skye 11 May 23, 2022
Amazon S3 Transfer Manager for Python

s3transfer - An Amazon S3 Transfer Manager for Python S3transfer is a Python library for managing Amazon S3 transfers. Note This project is not curren

the boto project 158 Jan 07, 2023
Python cluster client for the official redis cluster. Redis 3.0+.

redis-py-cluster This client provides a client for redis cluster that was added in redis 3.0. This project is a port of redis-rb-cluster by antirez, w

Grokzen 1.1k Jan 05, 2023
Implementing basic MySQL CRUD (Create, Read, Update, Delete) queries, using Python.

MySQL with Python Implementing basic MySQL CRUD (Create, Read, Update, Delete) queries, using Python. We can connect to a MySQL database hosted locall

MousamSingh 5 Dec 01, 2021
Script em python para carregar os arquivos de cnpj dos dados públicos da Receita Federal em MYSQL.

cnpj-mysql Script em python para carregar os arquivos de cnpj dos dados públicos da Receita Federal em MYSQL. Dados públicos de cnpj no site da Receit

17 Dec 25, 2022
aiosql - Simple SQL in Python

aiosql - Simple SQL in Python SQL is code. Write it, version control it, comment it, and run it using files. Writing your SQL code in Python programs

Will Vaughn 1.1k Jan 08, 2023
Python script to clone SQL dashboard from one workspace to another

Databricks dashboard clone Unofficial project to allow Databricks SQL dashboard copy from one workspace to another. Resource clone Setup: Create a fil

Quentin Ambard 12 Jan 01, 2023
Pony Object Relational Mapper

Downloads Pony Object-Relational Mapper Pony is an advanced object-relational mapper. The most interesting feature of Pony is its ability to write que

3.1k Jan 04, 2023
Database connection pooler for Python

Nimue Strange women lying in ponds distributing swords is no basis for a system of government! --Dennis, Peasant Nimue is a database connection pool f

1 Nov 09, 2021
Simplest SQL mapper in Python, probably

SQL MAPPER Basically what it does is: it executes some SQL thru a database connector you fed it, maps it to some model and gives to u. Also it can cre

2 Nov 07, 2022