PyTorch code for the paper "Complementarity is the King: Multi-modal and Multi-grained Hierarchical Semantic Enhancement Network for Cross-modal Retrieval".

Overview

Complementarity is the King: Multi-modal and Multi-grained Hierarchical Semantic Enhancement Network for Cross-modal Retrieval (M2HSE)

PyTorch code for M2HSE. The local-level subenetwork of our M2HSE is built on top of the VSESC.

Xinlei Pei, Zheng Liu, Shaojing Yuan, Shanshan Gao, Huijian Han and Caiming Zhang. "Complementarity is the King: Multi-modal and Multi-grained Hierarchical Semantic Enhancement Network for Cross-modal Retrieval".

Introduction

We give a demo code of the Corel 5K dataset, including the details of training process for the global-level subnetwork and the local-level subnetwork.

Requirements

We recommended the following dependencies.

  • Python 3.6

  • PyTorch (1.3.1)

  • NumPy (1.19.2)

  • Punkt Sentence Tokenizer:

import nltk
nltk.download()
> d punkt

Download data

The raw images and the corrsponding texts can be downloaded from here. Note that we performed data cleaning on this dataset and the specific operations are described in the paper.

Besides, 1) for extracting the fine-grained visual features, the raw images are divided uniformly into 3*3 blocks. 2) we adopt the AlexNet, pre-trained on ImageNet, to extract the CNN features. 3) We upload text data in the ./data/coarse-grained-data/ and ./data/fine-grained-data . Therefore, for data preparation you have the following two options :

  1. Download the above raw data and extract the corresponding features according to the strategy we introduced in the paper.
  2. Contact us for relevant data. (Email: [email protected])

Training models

  • For training the global-level subnetwork:

    Run train_global.py:

    python train_global.py 
        --data_path ./data/coarse-grained-data
        --data_name corel5k_precomp 
        --vocab_path ./vocab 
        --logger_name ./checkpoint/M2HSE/Global/Corel5K 
        --model_name ./checkpoint/M2HSE/Global/Corel5K 
        --num_epochs 100 
        --lr_updata 50 
        --batchsize 100  
        --gamma_1 1 
        --gamma_2 .5 
        --alpha_1 .8 
        --alpha_2 .8
  • For training the local-level subnetwork:

    Run train_local.py:

    python train_local.py 
        --data_path ./data/fine-grained-data
        --data_name corel5k_precomp 
        --vocab_path ./vocab 
        --logger_name ./checkpoint/M2HSE/Local/Corel5K 
        --model_name ./checkpoint/M2HSE/Local/Corel5K 
        --num_epochs 100 
        --lr_updata 50 
        --batchsize 100  
        --gamma_1 1 
        --gamma_2 .5 
        --beta_1 .4 
        --beta_2 .4

Reference

Stay tuned. :)

License

Apache License 2.0

Owner
Xinlei-Pei
A Noob in Cross-modal Retrieval.
Xinlei-Pei
Make your AirPlay devices as TTS speakers

Apple AirPlayer Home Assistant integration component, make your AirPlay devices as TTS speakers. Before Use 2021.6.X or earlier Apple Airplayer compon

George Zhao 117 Dec 15, 2022
Swin-Transformer is basically a hierarchical Transformer whose representation is computed with shifted windows.

Swin-Transformer Swin-Transformer is basically a hierarchical Transformer whose representation is computed with shifted windows. For more details, ple

旷视天元 MegEngine 9 Mar 14, 2022
PyTorch implementation for Score-Based Generative Modeling through Stochastic Differential Equations (ICLR 2021, Oral)

Score-Based Generative Modeling through Stochastic Differential Equations This repo contains a PyTorch implementation for the paper Score-Based Genera

Yang Song 757 Jan 04, 2023
NAS-HPO-Bench-II is the first benchmark dataset for joint optimization of CNN and training HPs.

NAS-HPO-Bench-II API Overview NAS-HPO-Bench-II is the first benchmark dataset for joint optimization of CNN and training HPs. It helps a fair and low-

yoichi hirose 8 Nov 21, 2022
Revisiting, benchmarking, and refining Heterogeneous Graph Neural Networks.

Heterogeneous Graph Benchmark Revisiting, benchmarking, and refining Heterogeneous Graph Neural Networks. Roadmap We organize our repo by task, and on

THUDM 176 Dec 17, 2022
Neural HMMs are all you need (for high-quality attention-free TTS)

Neural HMMs are all you need (for high-quality attention-free TTS) Shivam Mehta, Éva Székely, Jonas Beskow, and Gustav Eje Henter This is the official

Shivam Mehta 0 Oct 28, 2022
PoseViz – Multi-person, multi-camera 3D human pose visualization tool built using Mayavi.

PoseViz – 3D Human Pose Visualizer Multi-person, multi-camera 3D human pose visualization tool built using Mayavi. As used in MeTRAbs visualizations.

István Sárándi 79 Dec 30, 2022
Repository for open research on optimizers.

Open Optimizers Repository for open research on optimizers. This is a test in sharing research/exploration as it happens. If you use anything from thi

Ariel Ekgren 6 Jun 24, 2022
Code accompanying the paper on "An Empirical Investigation of Domain Generalization with Empirical Risk Minimizers" published at NeurIPS, 2021

Code for "An Empirical Investigation of Domian Generalization with Empirical Risk Minimizers" (NeurIPS 2021) Motivation and Introduction Domain Genera

Meta Research 15 Dec 27, 2022
Minecraft Hack Detection With Python

Minecraft Hack Detection An attempt to try and use crowd sourced replays to find

Kuleen Sasse 3 Mar 26, 2022
A Fast and Accurate One-Stage Approach to Visual Grounding, ICCV 2019 (Oral)

One-Stage Visual Grounding ***** New: Our recent work on One-stage VG is available at ReSC.***** A Fast and Accurate One-Stage Approach to Visual Grou

Zhengyuan Yang 118 Dec 05, 2022
🎃 Core identification module of AI powerful point reading system platform.

ppReader-Kernel Intro Core identification module of AI powerful point reading system platform. Usage 硬件: Windows10、GPU:nvdia GTX 1060 、普通RBG相机 软件: con

CrashKing 1 Jan 11, 2022
K-Nearest Neighbor in Pytorch

Pytorch KNN CUDA 2019/11/02 This repository will no longer be maintained as pytorch supports sort() and kthvalue on tensors. git clone https://github.

Chris Choy 65 Dec 01, 2022
Code for the paper "Location-aware Single Image Reflection Removal"

Location-aware Single Image Reflection Removal The shown images are provided by the datasets from IBCLN, ERRNet, SIR2 and the Internet images. The cod

72 Dec 08, 2022
DiffWave is a fast, high-quality neural vocoder and waveform synthesizer.

DiffWave DiffWave is a fast, high-quality neural vocoder and waveform synthesizer. It starts with Gaussian noise and converts it into speech via itera

LMNT 498 Jan 03, 2023
(ImageNet pretrained models) The official pytorch implemention of the TPAMI paper "Res2Net: A New Multi-scale Backbone Architecture"

Res2Net The official pytorch implemention of the paper "Res2Net: A New Multi-scale Backbone Architecture" Our paper is accepted by IEEE Transactions o

Res2Net Applications 928 Dec 29, 2022
Inferred Model-based Fuzzer

IMF: Inferred Model-based Fuzzer IMF is a kernel API fuzzer that leverages an automated API model inferrence techinque proposed in our paper at CCS. I

SoftSec Lab 104 Sep 28, 2022
The Python code for the paper A Hybrid Quantum-Classical Algorithm for Robust Fitting

About The Python code for the paper A Hybrid Quantum-Classical Algorithm for Robust Fitting The demo program was only tested under Conda in a standard

Anh-Dzung Doan 5 Nov 28, 2022
Unadversarial Examples: Designing Objects for Robust Vision

Unadversarial Examples: Designing Objects for Robust Vision This repository contains the code necessary to replicate the major results of our paper: U

Microsoft 93 Nov 28, 2022
Exploring Versatile Prior for Human Motion via Motion Frequency Guidance (3DV2021)

Exploring Versatile Prior for Human Motion via Motion Frequency Guidance [Video Demo] [Paper] Installation Requirements Python 3.6 PyTorch 1.1.0 Pleas

Jiachen Xu 19 Oct 28, 2022