Combining Reinforcement Learning and Constraint Programming for Combinatorial Optimization

Overview

Hybrid solving process for combinatorial optimization problems

Combinatorial optimization has found applications in numerous fields, from aerospace to transportation planning and economics. The goal is to find an optimal solution among a finite set of possibilities. The well-known challenge one faces with combinatorial optimization is the state-space explosion problem: the number of possibilities grows exponentially with the problem size, which makes solving intractable for large problems.

In the last years, Deep Reinforcement Learning (DRL) has shown its promise for designing good heuristics dedicated to solve NP-hard combinatorial optimization problems. However, current approaches have two shortcomings: (1) they mainly focus on the standard travelling salesman problem and they cannot be easily extended to other problems, and (2) they only provide an approximate solution with no systematic ways to improve it or to prove optimality.

In another context, Constraint Programming (CP) is a generic tool to solve combinatorial optimization problems. Based on a complete search procedure, it will always find the optimal solution if we allow an execution time large enough. A critical design choice, that makes CP non-trivial to use in practice, is the branching decision, directing how the search space is explored. In this work, we propose a general and hybrid approach, based on DRL and CP, for solving combinatorial optimization problems. The core of our approach is based on a Dynamic Programming (DP) formulation, that acts as a bridge between both techniques.

In this work, we propose a general and hybrid approach, based on DRL and CP, for solving combinatorial optimization problems formulated as a DP. In the related paper, we show experimentally show that our solver is efficient to solve two challenging problems: the Travelling Salesman Problem with Time Windows and the 4-moments Portfolio Optimization Problem, that includes the means, deviations, skewnessess, and kurtosis of the assets. Results obtained show that the framework introduced outperforms the stand-alone RL and CP solutions, while being competitive with industrial solvers.

Please be aware that this project is still at research level.

Content of the repository

For each problem that we have considered, you can find:

  • A DP model serving as a basis for the RL environment and the CP model.
  • The RL enviroment and the CP model.
  • A RL training algorithm based on Deep Q-Learning (DQN).
  • A RL training algorithm based on Proximal Policy Optimization (PPO).
  • The models, and the hyperparameters used, that we trained.
  • Three CP solving algorithms leveraging the learned models: Depth-First Branch-and_bound (BaB), Iterative Limited Discrepancy Search (ILDS), and Restart Based Search (RBS)
  • A random instance generators for training the model and evaluating the solver.
.
├── conda_env.yml  # configuration file for the conda environment
├── run_training_x_y.sh  # script for running the training. It is where you have to enter the parameters 
├── trained_models/  # directory where the models that you train will be saved
├── selected_models/  # models that we used for our experiments
└── src/ 
	├── architecture/ # implementation of the NN used
        ├── util/  #  utilitary code (as the memory replay)
	├── problem/  # problems that we have implemented
		└── tsptw/ 
		      ├── main_training_x_y.py  # main file for training a model for the problem y using algorithm x
		      ├── baseline/ # methods that are used for comparison
		      ├── environment/ # the generator, and the DP model, acting also as the RL environment
		      ├── training/  # PPO and DQN training algorithms
		      ├── solving/  # CP model and solving algorithm
		├── portfolio/    

Installation instructions

1. Importing the repository

git clone https://github.com/qcappart/hybrid-cp-rl-solver.git

2. Setting up the conda virtual environment

conda env create -f conda_env.yml 

Note: install a DGL version compatible with your CUDA installation.

3. Building Gecode

Please refer to the setup instructions available on the official website.

4. Compiling the solver

A makefile is available in the root repository. First, modify it by adding your python path. Then, you can compile the project as follows:

make [problem] # e.g. make tsptw

It will create the executable solver_tsptw.

Basic use

1. Training a model

(Does not require Gecode)

./run_training_ppo_tsptw.sh # for PPO
./run_training_dqn_tsptw.sh # for DQN

2. Solving the problem

(Require Gecode)

# For TSPTW
./solver_tsptw --model=rl-ilds-dqn --time=60000 --size=20 --grid_size=100 --max_tw_size=100 --max_tw_gap=10 --d_l=5000 --cache=1 --seed=1  # Solve with ILDS-DQN
./solver_tsptw --model=rl-bab-dqn --time=60000 --size=20 --grid_size=100 --max_tw_size=100 --max_tw_gap=10 --cache=1 --seed=1 # Solve with BaB-DQN
./solver_tsptw --model=rl-rbs-ppo --time=60000 --size=20 --grid_size=100 --max_tw_size=100 --max_tw_gap=10 --cache=1 --luby=1 --temperature=1 --seed=1 # Solve with RBS-PPO
./solver_tsptw --model=nearest --time=60000 --size=20 --grid_size=100 --max_tw_size=100 --max_tw_gap=10 --d_l=5000 --seed=1 # Solve with a nearest neigbour heuristic (no learning)

# For Portfolio
./solver_portfolio --model=rl-ilds-dqn --time=60000 --size=50 --capacity_ratio=0.5 --lambda_1=1 --lambda_2=5 --lambda_3=5 --lambda_4=5  --discrete_coeffs=0 --cache=1 --seed=1 

For learning based methods, the model selected by default is the one located in the corresponding selected_model/ repository. For instance:

selected-models/ppo/tsptw/n-city-20/grid-100-tw-10-100/ 

Example of results

The table recaps the solution obtained for an instance generated with a seed of 0, and a timeout of 60 seconds. Bold results indicate that the solver has been able to proof the optimality of the solution and a dash that no solution has been found within the time limit.

Tour cost for the TSPTW

Model name 20 cities 50 cities 100 cities
DQN 959 - -
PPO (beam-width=16) 959 - -
CP-nearest 959 - -
BaB-DQN 959 2432 4735
ILDS-DQN 959 2432 -
RBS-PPO 959 2432 4797
./benchmarking/tsptw_bmk.sh 0 20 60000 # Arguments: [seed] [n_city] [timeout - ms]
./benchmarking/tsptw_bmk.sh 0 50 60000
./benchmarking/tsptw_bmk.sh 0 100 60000

Profit for Portfolio Optimization

Model name 20 items 50 items 100 items
DQN 247.40 1176.94 2223.09
PPO (beam-width=16) 264.49 1257.42 2242.67
BaB-DQN 273.04 1228.03 2224.44
ILDS-DQN 273.04 1201.53 2235.89
RBS-PPO 267.05 1265.50 2258.65
./benchmarking/portfolio_bmk.sh 0 20 60000 # Arguments: [seed] [n_item] [timeout - ms]
./benchmarking/portfolio_bmk.sh 0 50 60000
./benchmarking/portfolio_bmk.sh 0 100 60000

Technologies and tools used

  • The code, at the exception of the CP model, is implemented in Python 3.7.
  • The CP model is implemented in C++ and is solved using Gecode. The reason of this design choice is that there is no CP solver in Python with the requirements we needed.
  • The graph neural network architecture has been implemented in Pytorch together with DGL.
  • The set embedding is based on SetTransformer.
  • The interface between the C++ and Python code is done with Pybind11.

Current implemented problems

At the moment, only the travelling salesman problem with time windows and the 4-moments portfolio optimization are present in this repository. However, we also have the TSP, and the 0-1 Knapsack problem available. If there is demand for these problems, I will add them in this repository. Feel free to open an issue for that or if you want to add another problem.

Cite

Please use this reference:

@misc{cappart2020combining,
    title={Combining Reinforcement Learning and Constraint Programming for Combinatorial Optimization},
    author={Quentin Cappart and Thierry Moisan and Louis-Martin Rousseau and Isabeau Prémont-Schwarz and Andre Cire},
    year={2020},
    eprint={2006.01610},
    archivePrefix={arXiv},
    primaryClass={cs.AI}
}

Licence

This work is under MIT licence (https://choosealicense.com/licenses/mit/). It is a short and simple very permissive license with conditions only requiring preservation of copyright and license notices. Licensed works, modifications, and larger works may be distributed under different terms and without source code.

i3DMM: Deep Implicit 3D Morphable Model of Human Heads

i3DMM: Deep Implicit 3D Morphable Model of Human Heads CVPR 2021 (Oral) Arxiv | Poject Page This project is the official implementation our work, i3DM

Tarun Yenamandra 60 Jan 03, 2023
Autonomous racing with the Anki Overdrive

Anki Autonomous Racing Autonomous racing with the Anki Overdrive. Using the Overdrive-Python API (https://github.com/xerodotc/overdrive-python) develo

3 Dec 11, 2022
Personalized Transfer of User Preferences for Cross-domain Recommendation (PTUPCDR)

This is the official implementation of our paper Personalized Transfer of User Preferences for Cross-domain Recommendation (PTUPCDR), which has been accepted by WSDM2022.

Yongchun Zhu 81 Dec 29, 2022
CMSC320 - Introduction to Data Science - Fall 2021

CMSC320 - Introduction to Data Science - Fall 2021 Instructors: Elias Jonatan Gonzalez and José Manuel Calderón Trilla Lectures: MW 3:30-4:45 & 5:00-6

Introduction to Data Science 6 Sep 12, 2022
A Jinja extension (compatible with Flask and other frameworks) to compile and/or compress your assets.

A Jinja extension (compatible with Flask and other frameworks) to compile and/or compress your assets.

Jayson Reis 94 Nov 21, 2022
All the essential resources and template code needed to understand and practice data structures and algorithms in python with few small projects to demonstrate their practical application.

Data Structures and Algorithms Python INDEX 1. Resources - Books Data Structures - Reema Thareja competitiveCoding Big-O Cheat Sheet DAA Syllabus Inte

Shushrut Kumar 129 Dec 15, 2022
A lane detection integrated Real-time Instance Segmentation based on YOLACT (You Only Look At CoefficienTs)

Real-time Instance Segmentation and Lane Detection This is a lane detection integrated Real-time Instance Segmentation based on YOLACT (You Only Look

Jin 4 Dec 30, 2022
The sixth place winning solution (6/220) in 2021 Gaofen Challenge.

SwinTransformer + OBBDet The sixth place winning solution (6/220) in the track of Fine-grained Object Recognition in High-Resolution Optical Images, 2

ming71 46 Dec 02, 2022
EMNLP 2021 paper Models and Datasets for Cross-Lingual Summarisation.

This repository contains data and code for our EMNLP 2021 paper Models and Datasets for Cross-Lingual Summarisation. Please contact me at

9 Oct 28, 2022
This is a repository for a Semantic Segmentation inference API using the Gluoncv CV toolkit

BMW Semantic Segmentation GPU/CPU Inference API This is a repository for a Semantic Segmentation inference API using the Gluoncv CV toolkit. The train

BMW TechOffice MUNICH 56 Nov 24, 2022
Implementation of the federated dual coordinate descent (FedDCD) method.

FedDCD.jl Implementation of the federated dual coordinate descent (FedDCD) method. Installation To install, just call Pkg.add("https://github.com/Zhen

Zhenan Fan 6 Sep 21, 2022
Wileless-PDGNet Implementation

Wileless-PDGNet Implementation This repo is related to the following paper: Boning Li, Ananthram Swami, and Santiago Segarra, "Power allocation for wi

6 Oct 04, 2022
DGN pymarl - Implementation of DGN on Pymarl, which could be trained by VDN or QMIX

This is the implementation of DGN on Pymarl, which could be trained by VDN or QM

4 Nov 23, 2022
Using Self-Supervised Pretext Tasks for Active Learning - Official Pytorch Implementation

Using Self-Supervised Pretext Tasks for Active Learning - Official Pytorch Implementation Experiment Setting: CIFAR10 (downloaded and saved in ./DATA

John Seon Keun Yi 38 Dec 27, 2022
Official implementation of the article "Unsupervised JPEG Domain Adaptation For Practical Digital Forensics"

Unsupervised JPEG Domain Adaptation for Practical Digital Image Forensics @WIFS2021 (Montpellier, France) Rony Abecidan, Vincent Itier, Jeremie Boulan

Rony Abecidan 6 Jan 06, 2023
Qcover is an open source effort to help exploring combinatorial optimization problems in Noisy Intermediate-scale Quantum(NISQ) processor.

Qcover is an open source effort to help exploring combinatorial optimization problems in Noisy Intermediate-scale Quantum(NISQ) processor. It is devel

33 Nov 11, 2022
A tool for making map images from OpenTTD save games

OpenTTD Surveyor A tool for making map images from OpenTTD save games. This is not part of the main OpenTTD codebase, nor is it ever intended to be pa

Aidan Randle-Conde 9 Feb 15, 2022
Code to reproduce the results in "Visually Grounded Reasoning across Languages and Cultures", EMNLP 2021.

marvl-code [WIP] This is the implementation of the approaches described in the paper: Fangyu Liu*, Emanuele Bugliarello*, Edoardo M. Ponti, Siva Reddy

25 Nov 15, 2022
Python Single Object Tracking Evaluation

pysot-toolkit The purpose of this repo is to provide evaluation API of Current Single Object Tracking Dataset, including VOT2016 VOT2018 VOT2018-LT OT

348 Dec 22, 2022
YOLOX Win10 Project

Introduction 这是一个用于Windows训练YOLOX的项目,相比于官方项目,做了一些适配和修改: 1、解决了Windows下import yolox失败,No such file or directory: 'xxx.xml'等路径问题 2、CUDA out of memory等显存不

5 Jun 08, 2022