Detect textlines in document images

Overview

Build Status

Textline Detection

Detect textlines in document images

Introduction

This tool performs border, region and textline detection from document image data and returns the results as PAGE-XML. The goal of this project is to extract textlines of a document in order to feed them to an OCR model. This is achieved by four successive stages as follows:

The first three stages are based on pixelwise segmentation.

Border detection

For the purpose of text recognition (OCR) and in order to avoid noise being introduced from texts outside the printspace, one first needs to detect the border of the printed frame. This is done by a binary pixelwise-segmentation model trained on a dataset of 2,000 documents where about 1,200 of them come from the dhSegment project (you can download the dataset from here) and the remainder having been annotated in SBB. For border detection, the model needs to be fed with the whole image at once rather than separated in patches.

Layout detection

As a next step, text regions need to be identified by means of layout detection. Again a pixelwise segmentation model was trained on 131 labeled images from the SBB digital collections, including some data augmentation. Since the target of this tool are historical documents, we consider as main region types text regions, separators, images, tables and background - each with their own subclasses, e.g. in the case of text regions, subclasses like header/heading, drop capital, main body text etc. While it would be desirable to detect and classify each of these classes in a granular way, there are also limitations due to having a suitably large and balanced training set. Accordingly, the current version of this tool is focussed on the main region types background, text region, image and separator.

Textline detection

In a subsequent step, binary pixelwise segmentation is used again to classify pixels in a document that constitute textlines. For textline segmentation, a model was initially trained on documents with only one column/block of text and some augmentation with regards to scaling. By fine-tuning the parameters also for multi-column documents, additional training data was produced that resulted in a much more robust textline detection model.

Heuristic methods

Some heuristic methods are also employed to further improve the model predictions:

  • After border detection, the largest contour is determined by a bounding box and the image cropped to these coordinates.
  • For text region detection, the image is scaled up to make it easier for the model to detect background space between text regions.
  • A minimum area is defined for text regions in relation to the overall image dimensions, so that very small regions that are actually noise can be filtered out.
  • Deskewing is applied on the text region level (due to regions having different degrees of skew) in order to improve the textline segmentation result.
  • After deskewing, a calculation of the pixel distribution on the X-axis allows the separation of textlines (foreground) and background pixels.
  • Finally, using the derived coordinates, bounding boxes are determined for each textline.

Installation

pip install .

Models

In order to run this tool you also need trained models. You can download our pretrained models from here:
https://qurator-data.de/sbb_textline_detector/

Usage

The basic command-line interface can be called like this:

sbb_textline_detector -i <image file name> -o <directory to write output xml> -m <directory of models>

The tool does accept raw (RGB/grayscale) images as input, but results will be much improved when a properly binarized image is used instead. We also provide a tool to perform this binarization step.

Usage with OCR-D

In addition, there is a CLI for OCR-D:

ocrd-sbb-textline-detector -I OCR-D-IMG -O OCR-D-SEG-LINE-SBB -P model /path/to/the/models/textline_detection

Segmentation works on raw (RGB/grayscale) images, but honours AlternativeImages from earlier preprocessing steps, so it's OK to perform (say) deskewing first, followed by textline detection. Results from previous cropping or binarization steps are allowed and retained, but will be ignored. (So these are only useful if themselves needed for deskewing or dewarping prior to segmentation.)

This processor will replace any previously existing Border, ReadingOrder and TextRegion instances (but keep other region types unchanged).

Owner
QURATOR-SPK
Curation Technologies
QURATOR-SPK
Demo processor to illustrate OCR-D Python API

ocrd_vandalize/ Demo processor to illustrate the OCR-D/core Python API Description :TODO: write docs :) Installation From PyPI pip3 install ocrd_vanda

Konstantin Baierer 5 May 05, 2022
Awesome multilingual OCR toolkits based on PaddlePaddle (practical ultra lightweight OCR system, provide data annotation and synthesis tools, support training and deployment among server, mobile, embedded and IoT devices)

English | 简体中文 Introduction PaddleOCR aims to create multilingual, awesome, leading, and practical OCR tools that help users train better models and a

27.5k Jan 08, 2023
OCR powered screen-capture tool to capture information instead of images

NormCap OCR powered screen-capture tool to capture information instead of images. Links: Repo | PyPi | Releases | Changelog | FAQs Content: Quickstart

575 Dec 31, 2022
Course material for the Multi-agents and computer graphics course

TC2008B Course material for the Multi-agents and computer graphics course. Setup instructions Strongly recommend using a custom conda environment. Ins

16 Dec 13, 2022
Code for the paper "Controllable Video Captioning with an Exemplar Sentence"

SMCG Code for the paper "Controllable Video Captioning with an Exemplar Sentence" Introduction We investigate a novel and challenging task, namely con

10 Dec 04, 2022
Repository for Scene Text Detection with Supervised Pyramid Context Network with tensorflow.

Scene-Text-Detection-with-SPCNET Unofficial repository for [Scene Text Detection with Supervised Pyramid Context Network][https://arxiv.org/abs/1811.0

121 Oct 15, 2021
Provides OCR (Optical Character Recognition) services through web applications

OCR4all As suggested by the name one of the main goals of OCR4all is to allow basically any given user to independently perform OCR on a wide variety

174 Dec 31, 2022
RepMLP: Re-parameterizing Convolutions into Fully-connected Layers for Image Recognition

RepMLP RepMLP: Re-parameterizing Convolutions into Fully-connected Layers for Image Recognition Released the code of RepMLP together with an example o

260 Jan 03, 2023
Tensorflow-based CNN+LSTM trained with CTC-loss for OCR

Overview This collection demonstrates how to construct and train a deep, bidirectional stacked LSTM using CNN features as input with CTC loss to perfo

Jerod Weinman 489 Dec 21, 2022
Code release for Hu et al., Learning to Segment Every Thing. in CVPR, 2018.

Learning to Segment Every Thing This repository contains the code for the following paper: R. Hu, P. Dollár, K. He, T. Darrell, R. Girshick, Learning

Ronghang Hu 417 Oct 03, 2022
Polaris is a Face recognition attendance system .

Support Me 🚀 About Polaris 📄 Polaris is a system based on facial recognition with a futuristic GUI design, Can easily find people informations store

XN3UR0N 215 Dec 26, 2022
Generates a message from the infamous Jerma Impostor image

Generate your very own jerma sus imposter message. Modes: Default Mode: Only supports the characters " ", !, a, b, c, d, e, h, i, m, n, o, p, q, r, s,

Giorno420 1 Oct 27, 2022
Repository collecting all the submodules for the new PyTorch-based OCR System.

OCRopus3 is being replaced by OCRopus4, which is a rewrite using PyTorch 1.7; release should be soonish. Please check github.com/tmbdev/ocropus for up

NVIDIA Research Projects 138 Dec 09, 2022
This repo contains several opencv projects done while learning opencv in python.

opencv-projects-python This repo contains both several opencv projects done while learning opencv by python and opencv learning resources [Basic conce

Fatin Shadab 2 Nov 03, 2022
Self-supervised Equivariant Attention Mechanism for Weakly Supervised Semantic Segmentation, CVPR 2020 (Oral)

SEAM The implementation of Self-supervised Equivariant Attention Mechanism for Weakly Supervised Semantic Segmentaion. You can also download the repos

Hibercraft 459 Dec 26, 2022
Textboxes : Image Text Detection Model : python package (tensorflow)

shinTB Abstract A python package for use Textboxes : Image Text Detection Model implemented by tensorflow, cv2 Textboxes Paper Review in Korean (My Bl

Jayne Shin (신재인) 91 Dec 15, 2022
SCOUTER: Slot Attention-based Classifier for Explainable Image Recognition

SCOUTER: Slot Attention-based Classifier for Explainable Image Recognition PDF Abstract Explainable artificial intelligence has been gaining attention

87 Dec 26, 2022
TextField: Learning A Deep Direction Field for Irregular Scene Text Detection (TIP 2019)

TextField: Learning A Deep Direction Field for Irregular Scene Text Detection Introduction The code and trained models of: TextField: Learning A Deep

Yukang Wang 101 Dec 12, 2022
Aloception is a set of package for computer vision: aloscene, alodataset, alonet.

Aloception is a set of package for computer vision: aloscene, alodataset, alonet.

Visual Behavior 86 Dec 28, 2022
2 telegram-bots: for image recognition and for text generation

💻 📱 Telegram_Bots 🔎 & 📖 2 telegram-bots: for image recognition and for text generation. About Image recognition bot: User sends a photo and bot de

Marina Polukoshko 1 Jan 27, 2022