Self Organising Map (SOM) for clustering of atomistic samples through unsupervised learning.

Overview

Self Organising Map for Clustering of Atomistic Samples - V2

Description

Self Organising Map (also known as Kohonen Network) implemented in Python for clustering of atomistic samples through unsupervised learning. The program allows the user to select wich per-atom quantities to use for training and application of the network, this quantities must be specified in the LAMMPS input file that is being analysed. The algorithm also requires the user to introduce some of the networks parameters:

  • f: Fraction of the input data to be used when training the network, must be between 0 and 1.
  • SIGMA: Maximum value of the sigma function, present in the neighbourhood function.
  • ETA: Maximum value of the eta funtion, which acts as the learning rate of the network.
  • N: Number of output neurons of the SOM, this is the number of groups the algorithm will use when classifying the atoms in the sample.
  • Whether to use batched or serial learning for the training process.
  • B: Batch size, in case the training is performed with batched learning.

The input file must be inside the same folder as the main.py file. Furthermore, the input file passed to the algorithm must have the LAMMPS dump format, or at least have a line with the following format:

ITEM: ATOMS id x y z feature_1 feature_2 ...

To run the software, simply execute the following command in a terminal (from the folder that contains the files and with a python environment activated):

python3 main.py

Check the software report in the general repository for more information: https://github.com/rambo1309/SOM_for_Atomistic_Samples_GeneralRepo

Dependencies:

This software is written in Python 3.8.8 and uses the following external libraries:

  • NumPy 1.20.1
  • Pandas 1.2.4

(Both packages come with the basic installation of Anaconda)

What's new in V2:

Its important to clarify that V2 of the software isn't designed to replace V1, but to be used when multiple files need to be analysed sequentially with a network that has been trained using a specific training file. It is recommended for the user to first use V1 to explore the results given by different parameters and features of the sample, and then to use V2 to get consistent results for a series of samples. Another reason why V1 will be continually updated is its command-line interactive interface, which allows the users to implement the algorithm without ever having to open and edit a python file.

The most fundamental change with respect to V.1 is the way of communicating with the program. While V.1 uses an interactive command-line interface, V.2 requests an input_params.py file that contains a dictionary specifying the parameters and sample files for the algorithm.

Check the report file in the repository for a complete description of the changes made in the software.

Updates:

Currently working on giving the user the option to change the learning rate funtion, eta, with a few alternatives such as a power-law and an exponential decrease. Another important issue still to be addressed is the training time of the SOM.

Owner
Franco Aquistapace
Undergraduate Physics student at FCEN, UNCuyo
Franco Aquistapace
BigDL: Distributed Deep Learning Framework for Apache Spark

BigDL: Distributed Deep Learning on Apache Spark What is BigDL? BigDL is a distributed deep learning library for Apache Spark; with BigDL, users can w

4.1k Jan 09, 2023
ML Kaggle Titanic Problem using LogisticRegrission

-ML-Kaggle-Titanic-Problem-using-LogisticRegrission here you will find the solution for the titanic problem on kaggle with comments and step by step c

Mahmoud Nasser Abdulhamed 3 Oct 23, 2022
A Tools that help Data Scientists and ML engineers train and deploy ML models.

Domino Research This repo contains projects under active development by the Domino R&D team. We build tools that help Data Scientists and ML engineers

Domino Data Lab 73 Oct 17, 2022
A Lightweight Hyperparameter Optimization Tool 🚀

The mle-hyperopt package provides a simple and intuitive API for hyperparameter optimization of your Machine Learning Experiment (MLE) pipeline.

Robert Lange 137 Dec 02, 2022
This machine-learning algorithm takes in data from the last 60 days and tries to predict tomorrow's price of any crypto you ask it.

Crypto-Currency-Predictor This machine-learning algorithm takes in data from the last 60 days and tries to predict tomorrow's price of any crypto you

Hazim Arafa 6 Dec 04, 2022
stability-selection - A scikit-learn compatible implementation of stability selection

stability-selection - A scikit-learn compatible implementation of stability selection stability-selection is a Python implementation of the stability

185 Dec 03, 2022
Markov bot - A Writing bot based on Markov Chain for Data Structure Lab

基于马尔可夫链的写作机器人 前端 用html/css完成 Demo展示(已给出文本的相应展示) 用户提供相关的语料库后训练的成果 后端 要完成的几个接口 解析文

DysprosiumDy 9 May 05, 2022
Anytime Learning At Macroscale

On Anytime Learning At Macroscale Learning from sequential data dumps (key) Requirements Python 3.7 Pytorch 1.9.0 Hydra 1.1.0 (pip install hydra-core

Meta Research 8 Mar 29, 2022
[HELP REQUESTED] Generalized Additive Models in Python

pyGAM Generalized Additive Models in Python. Documentation Official pyGAM Documentation: Read the Docs Building interpretable models with Generalized

daniel servén 747 Jan 05, 2023
A collection of machine learning examples and tutorials.

machine_learning_examples A collection of machine learning examples and tutorials.

LazyProgrammer.me 7.1k Jan 01, 2023
LibRerank is a toolkit for re-ranking algorithms. There are a number of re-ranking algorithms, such as PRM, DLCM, GSF, miDNN, SetRank, EGRerank, Seq2Slate.

LibRerank LibRerank is a toolkit for re-ranking algorithms. There are a number of re-ranking algorithms, such as PRM, DLCM, GSF, miDNN, SetRank, EGRer

126 Dec 28, 2022
NCVX (NonConVeX): A User-Friendly and Scalable Package for Nonconvex Optimization in Machine Learning.

NCVX (NonConVeX): A User-Friendly and Scalable Package for Nonconvex Optimization in Machine Learning.

SUN Group @ UMN 28 Aug 03, 2022
Tangram makes it easy for programmers to train, deploy, and monitor machine learning models.

Tangram Website | Discord Tangram makes it easy for programmers to train, deploy, and monitor machine learning models. Run tangram train to train a mo

Tangram 1.4k Jan 05, 2023
This repo includes some graph-based CTR prediction models and other representative baselines.

Graph-based CTR prediction This is a repository designed for graph-based CTR prediction methods, it includes our graph-based CTR prediction methods: F

Big Data and Multi-modal Computing Group, CRIPAC 47 Dec 30, 2022
Machine Learning approach for quantifying detector distortion fields

DistortionML Machine Learning approach for quantifying detector distortion fields. This project is a feasibility study for training a surrogate model

Joel Bernier 1 Nov 05, 2021
Simulation of early COVID-19 using SIR model and variants (SEIR ...).

COVID-19-simulation Simulation of early COVID-19 using SIR model and variants (SEIR ...). Made by the Laboratory of Sustainable Life Assessment (GYRO)

José Paulo Pereira das Dores Savioli 1 Nov 17, 2021
Painless Machine Learning for python based on scikit-learn

PlainML Painless Machine Learning Library for python based on scikit-learn. Install pip install plainml Example from plainml import KnnModel, load_ir

1 Aug 06, 2022
LinearRegression2 Tvads and CarSales

LinearRegression2_Tvads_and_CarSales This project infers the insight that how the TV ads for cars and car Sales are being linked with each other. It i

Ashish Kumar Yadav 1 Dec 29, 2021
A project based example of Data pipelines, ML workflow management, API endpoints and Monitoring.

MLOps template with examples for Data pipelines, ML workflow management, API development and Monitoring.

Utsav 33 Dec 03, 2022
A modular active learning framework for Python

Modular Active Learning framework for Python3 Page contents Introduction Active learning from bird's-eye view modAL in action From zero to one in a fe

modAL 1.9k Dec 31, 2022