Self Organising Map (SOM) for clustering of atomistic samples through unsupervised learning.

Overview

Self Organising Map for Clustering of Atomistic Samples - V2

Description

Self Organising Map (also known as Kohonen Network) implemented in Python for clustering of atomistic samples through unsupervised learning. The program allows the user to select wich per-atom quantities to use for training and application of the network, this quantities must be specified in the LAMMPS input file that is being analysed. The algorithm also requires the user to introduce some of the networks parameters:

  • f: Fraction of the input data to be used when training the network, must be between 0 and 1.
  • SIGMA: Maximum value of the sigma function, present in the neighbourhood function.
  • ETA: Maximum value of the eta funtion, which acts as the learning rate of the network.
  • N: Number of output neurons of the SOM, this is the number of groups the algorithm will use when classifying the atoms in the sample.
  • Whether to use batched or serial learning for the training process.
  • B: Batch size, in case the training is performed with batched learning.

The input file must be inside the same folder as the main.py file. Furthermore, the input file passed to the algorithm must have the LAMMPS dump format, or at least have a line with the following format:

ITEM: ATOMS id x y z feature_1 feature_2 ...

To run the software, simply execute the following command in a terminal (from the folder that contains the files and with a python environment activated):

python3 main.py

Check the software report in the general repository for more information: https://github.com/rambo1309/SOM_for_Atomistic_Samples_GeneralRepo

Dependencies:

This software is written in Python 3.8.8 and uses the following external libraries:

  • NumPy 1.20.1
  • Pandas 1.2.4

(Both packages come with the basic installation of Anaconda)

What's new in V2:

Its important to clarify that V2 of the software isn't designed to replace V1, but to be used when multiple files need to be analysed sequentially with a network that has been trained using a specific training file. It is recommended for the user to first use V1 to explore the results given by different parameters and features of the sample, and then to use V2 to get consistent results for a series of samples. Another reason why V1 will be continually updated is its command-line interactive interface, which allows the users to implement the algorithm without ever having to open and edit a python file.

The most fundamental change with respect to V.1 is the way of communicating with the program. While V.1 uses an interactive command-line interface, V.2 requests an input_params.py file that contains a dictionary specifying the parameters and sample files for the algorithm.

Check the report file in the repository for a complete description of the changes made in the software.

Updates:

Currently working on giving the user the option to change the learning rate funtion, eta, with a few alternatives such as a power-law and an exponential decrease. Another important issue still to be addressed is the training time of the SOM.

Owner
Franco Aquistapace
Undergraduate Physics student at FCEN, UNCuyo
Franco Aquistapace
Timeseries analysis for neuroscience data

=================================================== Nitime: timeseries analysis for neuroscience data ===============================================

NIPY developers 212 Dec 09, 2022
Machine Learning for RC Cars

Suiron Machine Learning for RC Cars Prediction visualization (green = actual, blue = prediction) Click the video below to see it in action! Dependenci

Kendrick Tan 706 Jan 02, 2023
PyHarmonize: Adding harmony lines to recorded melodies in Python

PyHarmonize: Adding harmony lines to recorded melodies in Python About To use this module, the user provides a wav file containing a melody, the key i

Julian Kappler 2 May 20, 2022
A series of Jupyter notebooks that walk you through the fundamentals of Machine Learning and Deep Learning in Python using Scikit-Learn, Keras and TensorFlow 2.

Machine Learning Notebooks, 3rd edition This project aims at teaching you the fundamentals of Machine Learning in python. It contains the example code

Aurélien Geron 1.6k Jan 05, 2023
Customers Segmentation with RFM Scores and K-means

Customer Segmentation with RFM Scores and K-means RFM Segmentation table: K-Means Clustering: Business Problem Rule-based customer segmentation machin

5 Aug 10, 2022
[HELP REQUESTED] Generalized Additive Models in Python

pyGAM Generalized Additive Models in Python. Documentation Official pyGAM Documentation: Read the Docs Building interpretable models with Generalized

daniel servén 747 Jan 05, 2023
XGBoost-Ray is a distributed backend for XGBoost, built on top of distributed computing framework Ray.

XGBoost-Ray is a distributed backend for XGBoost, built on top of distributed computing framework Ray.

92 Dec 14, 2022
pymc-learn: Practical Probabilistic Machine Learning in Python

pymc-learn: Practical Probabilistic Machine Learning in Python Contents: Github repo What is pymc-learn? Quick Install Quick Start Index What is pymc-

pymc-learn 196 Dec 07, 2022
High performance implementation of Extreme Learning Machines (fast randomized neural networks).

High Performance toolbox for Extreme Learning Machines. Extreme learning machines (ELM) are a particular kind of Artificial Neural Networks, which sol

Anton Akusok 174 Dec 07, 2022
MICOM is a Python package for metabolic modeling of microbial communities

Welcome MICOM is a Python package for metabolic modeling of microbial communities currently developed in the Gibbons Lab at the Institute for Systems

57 Dec 21, 2022
Uses WiFi signals :signal_strength: and machine learning to predict where you are

Uses WiFi signals and machine learning (sklearn's RandomForest) to predict where you are. Even works for small distances like 2-10 meters.

Pascal van Kooten 5k Jan 09, 2023
A toolkit for making real world machine learning and data analysis applications in C++

dlib C++ library Dlib is a modern C++ toolkit containing machine learning algorithms and tools for creating complex software in C++ to solve real worl

Davis E. King 11.6k Jan 02, 2023
Pytools is an open source library containing general machine learning and visualisation utilities for reuse

pytools is an open source library containing general machine learning and visualisation utilities for reuse, including: Basic tools for API developmen

BCG Gamma 26 Nov 06, 2022
A project based example of Data pipelines, ML workflow management, API endpoints and Monitoring.

MLOps template with examples for Data pipelines, ML workflow management, API development and Monitoring.

Utsav 33 Dec 03, 2022
scikit-learn: machine learning in Python

scikit-learn is a Python module for machine learning built on top of SciPy and is distributed under the 3-Clause BSD license. The project was started

neurodata 3 Dec 16, 2022
A linear equation solver using gaussian elimination. Implemented for fun and learning/teaching.

A linear equation solver using gaussian elimination. Implemented for fun and learning/teaching. The solver will solve equations of the type: A can be

Sanjeet N. Dasharath 3 Feb 15, 2022
This is my implementation on the K-nearest neighbors algorithm from scratch using Python

K Nearest Neighbors (KNN) algorithm In this Machine Learning world, there are various algorithms designed for classification problems such as Logistic

sonny1902 1 Jan 08, 2022
LiuAlgoTrader is a scalable, multi-process ML-ready framework for effective algorithmic trading

LiuAlgoTrader is a scalable, multi-process ML-ready framework for effective algorithmic trading. The framework simplify development, testing, deployment, analysis and training algo trading strategies

Amichay Oren 458 Dec 24, 2022
Predict the output which should give a fair idea about the chances of admission for a student for a particular university

Predict the output which should give a fair idea about the chances of admission for a student for a particular university.

ArvindSandhu 1 Jan 11, 2022
Both social media sentiment and stock market data are crucial for stock price prediction

Relating-Social-Media-to-Stock-Movement-Public - We explore the application of Machine Learning for predicting the return of the stock by using the information of stock returns. A trading strategy ba

Vishal Singh Parmar 15 Oct 29, 2022