100 numpy exercises (with solutions)

Overview

100 numpy exercises

Binder

This is a collection of numpy exercises from numpy mailing list, stack overflow, and numpy documentation. I've also created some problems myself to reach the 100 limit. The goal of this collection is to offer a quick reference for both old and new users but also to provide a set of exercises for those who teach. For extended exercises, make sure to read From Python to NumPy.

Test them on Binder
Read them on GitHub

Note: markdown and ipython notebook are created programmatically from the source data in source/exercises.ktx. To modify the content of these files, please change the text in the source and run the generators.py module with a python interpreter with the libraries under requirements.txt installed.

The keyed text format (ktx) is a minimal human readable key-values to store text (markdown or others) indexed by keys.

This work is licensed under the MIT license.
DOI

Comments
  • Programmatically create markdown and jupyter notebook from a share dictionary with questions and answers

    Programmatically create markdown and jupyter notebook from a share dictionary with questions and answers

    Over the past months I had found numpy 100 very handy for learning, and as a source of information.

    At the same time it is not ideally implemented. If a question or answer needs an updated, this must be done manually in all files involved.

    To solve this issue I had embedded headers, questions, hints and answer in a python file as strings and dictionaries and created a method to automatically generate the jupyter notebooks and the markdown files.

    Changing the source dictionaries and stings would change the output files.

    E.g: if a question needs update, just update it under -data_source.py- source/questions.ktx and then re-create all the files with the updated questions with:

    python generators.py
    

    Also, there is no more need to have several jupyter notebooks, since hints and answers can be queried programmatically with hint(n) and answer(n) from within the jupyter notebook.

    A jupyter notebook where to query a random question (flashcard style) had been added too.

    Pleaese note: binder and link in the readme may need to be updated, to keep the binder version in sync with the current repo!

    After merging the repo would look like: https://github.com/SebastianoF/numpy-100/tree/dev

    opened by SebastianoF 10
  • 27. round away from 0 solution is wrong

    27. round away from 0 solution is wrong

    trunc() should be round(), like this: print (np.round(Z + np.copysign(0.5, Z)))

    Example: an original value of 1.4 becomes 1.9, which then rounds to 2 (correct) or truncates to 1 (incorrect).

    Alternatively, this might be more readable, but maybe it teaches less. Maybe having multiple solutions for each problem would be most educational?

    Z[Z<0] = np.floor(Z[Z<0])
    Z[Z>0] = np.ceil(Z[Z>0])
    print (Z)
    
    opened by MarredCheese 8
  • An alternative solution for Q.76

    An alternative solution for Q.76

    1. Consider a one-dimensional array Z, build a two-dimensional array whose first row is (Z[0],Z[1],Z[2]) and each subsequent row is shifted by 1 (last row should be (Z[-3],Z[-2],Z[-1]) (★★★) hint: from numpy.lib import stride_tricks

    # Author: Joe Kington / Erik Rigtorp from numpy.lib import stride_tricks

    def rolling(a, window): shape = (a.size - window + 1, window) strides = (a.strides[0], a.strides[0]) return stride_tricks.as_strided(a, shape=shape, strides=strides) Z = rolling(np.arange(10), 3) print(Z)

    Same as the last issue, sliding_window_view is an easier function in NumPy. The new solution will be:

    Z = np.arange(10)
    print(sliding_window_view(Z, window_shape=(3)))
    
    opened by iamyifan 7
  • Separate wording from solution

    Separate wording from solution

    Hi !

    Very nice set of exercice, I am walking through it ! It would be nice to be able to scroll without the fear of seeing the answer and to do exercices in any order.

    Kind regards

    opened by lcetinsoy 7
  • A doubt about question No.74

    A doubt about question No.74

    1. Given an array C that is a bincount, how to produce an array A such that np.bincount(A) == C? (★★★)

    The given answer is shown as below. C = np.bincount([1,1,2,3,4,4,6]) A = np.repeat(np.arange(len(C)), C) print(A)

    There maybe a problem with the description of question No.74,the answer given can only solve the problem of Non-strictly increasing 1-d array not for all kind of 1-d array.

    opened by madeirak 6
  • 20 - solution returns index of 101st element

    20 - solution returns index of 101st element

    In question 20, it is assumed that the 100th element is at index 100, which is inconsistent with question 6, where the 5th element is assumed to be at index 4.

    opened by greenovid 6
  • Alternative solution  for 87.

    Alternative solution for 87.

    Numpy has (finally) "upstreamed" skimage's view_as_windows under the name sliding_window_view. With this we can write exercise 87 using more ~verbose~ clear syntax

    Z = np.ones((16,16))
    k = 4
    
    windows = np.lib.stride_tricks.sliding_window_view(Z, (k, k))
    relevant_windows = windows[::k, ::k, ...]
    S = np.sum(np.sum(relevant_windows, axis=-1), axis=-1)
    

    or if we prefer (potentially hard to maintain) one-liners

    Z = np.ones((16,16))
    k = 4
    
    S = np.sum(
        np.sum(
            np.lib.stride_tricks.sliding_window_view(Z, (k, k))[::k, ::k, ...]
            axis=-1), 
        axis=-1)
    
    opened by FirefoxMetzger 5
  • rougier/numpy-100 exercise - Que 16. alternate solution

    rougier/numpy-100 exercise - Que 16. alternate solution

    1. How to add a border (filled with 0's) around an existing array? (★☆☆)¶

    Proposed Solution -

    a=np.random.randint(1,10,(5,5)) print(a) a[0:,(0,-1)]=0 a[(0,-1),1:-1]=0 print(a)

    Pl. give feedback on this, I am new to Python.

    opened by sudhendra-github 5
  • Solution to

    Solution to "How to find rows of A that contain elements of each row of B" exercise

    Hi, It seems the solution given is wrong unless I misunderstood the question. The question is:

    Consider two arrays A and B of shape (8,3) and (2,2). How to find rows of A that contain elements of each row of B regardless of the order of the elements in B?

    The solution provided selects rows of A that contain (1) at least two unique elements of B (can be the same unique element of B repeated twice) or (2) at least one element that occurs 2 or more times in B. The rows of B are irrelevant. This seems not to answer the question correctly. Example:

    B = np.array([[0,1],[2,2]])
    A = np.array([[3,3,3],[0,1,3],[0,0,3],[1,1,3],[2,3,3],[0,2,3],[1,2,3]])
    

    The correct solution should pick rows of A that contains 0 and 2 or 1 and 2 (i.e. each row of B is represented in a given row of A) - so only rows 5 an 6. Current solution will also pick rows of A that contain [0,1], 2x 0, 2x 1 or 1x 2 - so rows 1,2,3,4.

    C = (A[..., np.newaxis, np.newaxis] == B)
    rows = (C.sum(axis=(1,2,3)) >= B.shape[1]).nonzero()[0]
    print(rows)
    
    [1 2 3 4 5 6]
    

    The correct solution could be:

    C = (A[..., np.newaxis, np.newaxis] == B)
    rows = np.where(C.any((3,1)).all(1))[0]
    print(rows)
    
    [5 6]
    
    opened by ibah 5
  • Fail to load the ipython notebook

    Fail to load the ipython notebook

    Hi, I got something wrong with the ipython notebook in Binder.

    what I got: 2016-08-31 22 13 31

    and when I opened the 100 numpy exercises.ipynb file with my ipython I got the same error. my ipython version: 4.2.1

    opened by robeatnik 5
  • Answer 81 improved - no stride_tricks, just numpy

    Answer 81 improved - no stride_tricks, just numpy

    I suggest to use an answer that is done only by numpy means. stride_tricks is defined elsewhere, it is less elegant and may confuse the user. Pls consider my proposed solution.

    opened by poedator 4
  • About question 19

    About question 19

    the alternative solution does not work for creating a checkerboard pattern.

    # Alternative solution: Using reshaping
    arr = np.ones(64,dtype=int)
    arr[::2]=0
    arr = arr.reshape((8,8))
    print(arr)
    

    this will be the output. [[0 1 0 1 0 1 0 1] [0 1 0 1 0 1 0 1] [0 1 0 1 0 1 0 1] [0 1 0 1 0 1 0 1] [0 1 0 1 0 1 0 1] [0 1 0 1 0 1 0 1] [0 1 0 1 0 1 0 1] [0 1 0 1 0 1 0 1]]

    But what we want is

    Z = np.zeros((8,8),dtype=int)
    Z[1::2,::2] = 1
    Z[::2,1::2] = 1
    print(Z)
    

    [[0 1 0 1 0 1 0 1] [1 0 1 0 1 0 1 0] [0 1 0 1 0 1 0 1] [1 0 1 0 1 0 1 0] [0 1 0 1 0 1 0 1] [1 0 1 0 1 0 1 0] [0 1 0 1 0 1 0 1] [1 0 1 0 1 0 1 0]]

    or

    z = np.zeros((8, 8), int)
    z[1::2, 1::2] = 1
    z[::2, ::2] = 1
    print(z)
    

    [[1 0 1 0 1 0 1 0] [0 1 0 1 0 1 0 1] [1 0 1 0 1 0 1 0] [0 1 0 1 0 1 0 1] [1 0 1 0 1 0 1 0] [0 1 0 1 0 1 0 1] [1 0 1 0 1 0 1 0] [0 1 0 1 0 1 0 1]]

    opened by hacshyac 1
  • Possibly Faster solution for #66

    Possibly Faster solution for #66

    I thought maybe using .view() may be faster. And it seems.

    w, h = 256,256
    
    l = np.random.randint(0,4,(h,w,3), dtype=np.uint8)
    l2 = np.zeros((h,w,4), dtype=np.uint8)
    l2[...,:3]=l[...,:3]
    l2[...,3] = l2[...,2]
    l3 = l2.view(dtype=np.int32)
    n= len(np.unique(l3))
    print(n)
    

    My %%timeit shows 2.68 ms ± 67.1 µs per loop (mean ± std. dev. of 7 runs, 100 loops each) compared to Mark Setchell's version 4 ms ± 259 µs per loop (mean ± std. dev. of 7 runs, 100 loops each) I think there might be some trade off between allocating new memory and using view.

    The solution utilizes the fact that using .view() we can simply use np.unique(, axis=None). Since color is composed of 3bytes I just copied the last byte and did 4-bytes comparison with .view(dtype=np.int32)

    opened by kwhkim 8
  • Q16 fancy indexing solution does not work

    Q16 fancy indexing solution does not work

    An example:

    >>> a = np.random.randint(0, 10, (3, 3))
    >>> a[:, [0, -1]] = 0
    >>> a[[0, -1], :] = 0
    >>> a
    array([[0, 0, 0],
           [0, 5, 0],
           [0, 0, 0]])
    

    Unless I'm understanding the question incorrectly here (but the np.pad solution is doing what I first expected), the fancy indexing solution does not work.

    opened by Objectivitix 1
  • Problem with initialise.py

    Problem with initialise.py

    Hey guys,

    I was going to start doing a bunch of exercises about numpy and to start I had to run the first cell. I appears to be an error with that. I am new with github. I would be happy if you could help me :) Below, I sent the screenshot duv1

    opened by 6oncv1o 1
Releases(1.1)
Owner
Nicolas P. Rougier
Researcher in computational and cognitive neuroscience supporting open source, open access and open science.
Nicolas P. Rougier
MonsterManualPlus - An advanced monster manual for Tower of the Sorcerer.

Monster Manual + This is an advanced monster manual for Tower of the Sorcerer mods. Users can get a plenty of extra imformation for decision making wh

Yifan Zhou 1 Jan 01, 2022
Repository for learning Python (Python Tutorial)

Repository for learning Python (Python Tutorial) Languages and Tools 🧰 Overview 📑 Repository for learning Python (Python Tutorial) Languages and Too

Swiftman 2 Aug 22, 2022
100 Days of Code Learning program to keep a habit of coding daily and learn things at your own pace with help from our remote community.

100 Days of Code Learning program to keep a habit of coding daily and learn things at your own pace with help from our remote community.

Git Commit Show by Invide 41 Dec 30, 2022
The sarge package provides a wrapper for subprocess which provides command pipeline functionality.

Overview The sarge package provides a wrapper for subprocess which provides command pipeline functionality. This package leverages subprocess to provi

Vinay Sajip 14 Dec 18, 2022
Gaphor is the simple modeling tool

Gaphor Gaphor is a UML and SysML modeling application written in Python. It is designed to be easy to use, while still being powerful. Gaphor implemen

Gaphor 1.3k Jan 03, 2023
204-python-string-21BCA90 created by GitHub Classroom

204-Python This repository is created for subject "204 Programming Skill" Python Programming. This Repository contain list of programs of python progr

VIDYABHARTI TRUST COLLEGE OF BCA 6 Mar 31, 2022
LotteryBuyPredictionWebApp - Lottery Purchase Prediction Model

Lottery Purchase Prediction Model Objective and Goal Predict the lottery type th

Wanxuan Zhang 2 Feb 14, 2022
Zero configuration Airflow plugin that let you manage your DAG files.

simple-dag-editor SimpleDagEditor is a zero configuration plugin for Apache Airflow. It provides a file managing interface that points to your dag_fol

30 Jul 20, 2022
Bring RGB to life in Neovim

Bring RGB to life in Neovim Change your RGB devices' color depending on Neovim's mode. Fast and asynchronous plugin to live your vim-life to the fulle

Antoine 40 Oct 27, 2022
Swagger Documentation Generator for Django REST Framework: deprecated

Django REST Swagger: deprecated (2019-06-04) This project is no longer being maintained. Please consider drf-yasg as an alternative/successor. I haven

Marc Gibbons 2.6k Jan 03, 2023
Practical Python Programming

Welcome! When I first learned Python nearly 25 years ago, I was immediately struck by how I could productively apply it to all sorts of messy work pro

Dabeaz LLC 8.3k Jan 08, 2023
Python solutions to solve practical business problems.

Python Business Analytics Also instead of "watching" you can join the link-letter, it's already being sent out to about 90 people and you are free to

Derek Snow 357 Dec 26, 2022
A set of Python libraries that assist in calling the SoftLayer API.

SoftLayer API Python Client This library provides a simple Python client to interact with SoftLayer's XML-RPC API. A command-line interface is also in

SoftLayer 155 Sep 20, 2022
Explorative Data Analysis Guidelines

Explorative Data Analysis Get data into a usable format! Find out if the following predictive modeling phase will be successful! Combine everything in

Florian Rohrer 18 Dec 26, 2022
Generate modern Python clients from OpenAPI

openapi-python-client Generate modern Python clients from OpenAPI 3.x documents. This generator does not support OpenAPI 2.x FKA Swagger. If you need

555 Jan 02, 2023
Python script to generate Vale linting rules from word usage guidance in the Red Hat Supplementary Style Guide

ssg-vale-rules-gen Python script to generate Vale linting rules from word usage guidance in the Red Hat Supplementary Style Guide. These rules are use

Vale at Red Hat 1 Jan 13, 2022
Some of the best ways and practices of doing code in Python!

Pythonicness ❤ This repository contains some of the best ways and practices of doing code in Python! Features Properly formatted codes (PEP 8) for bet

Samyak Jain 2 Jan 15, 2022
Watch a Sphinx directory and rebuild the documentation when a change is detected. Also includes a livereload enabled web server.

sphinx-autobuild Rebuild Sphinx documentation on changes, with live-reload in the browser. Installation sphinx-autobuild is available on PyPI. It can

Executable Books 440 Jan 06, 2023
Highlight Translator can help you translate the words quickly and accurately.

Highlight Translator can help you translate the words quickly and accurately. By only highlighting, copying, or screenshoting the content you want to translate anywhere on your computer (ex. PDF, PPT

Coolshan 48 Dec 21, 2022
The blazing-fast Discord bot.

Wavy Wavy is an open-source multipurpose Discord bot built with pycord. Wavy is still in development, so use it at your own risk. Tools and services u

Wavy 7 Dec 27, 2022