100 numpy exercises (with solutions)

Overview

100 numpy exercises

Binder

This is a collection of numpy exercises from numpy mailing list, stack overflow, and numpy documentation. I've also created some problems myself to reach the 100 limit. The goal of this collection is to offer a quick reference for both old and new users but also to provide a set of exercises for those who teach. For extended exercises, make sure to read From Python to NumPy.

Test them on Binder
Read them on GitHub

Note: markdown and ipython notebook are created programmatically from the source data in source/exercises.ktx. To modify the content of these files, please change the text in the source and run the generators.py module with a python interpreter with the libraries under requirements.txt installed.

The keyed text format (ktx) is a minimal human readable key-values to store text (markdown or others) indexed by keys.

This work is licensed under the MIT license.
DOI

Comments
  • Programmatically create markdown and jupyter notebook from a share dictionary with questions and answers

    Programmatically create markdown and jupyter notebook from a share dictionary with questions and answers

    Over the past months I had found numpy 100 very handy for learning, and as a source of information.

    At the same time it is not ideally implemented. If a question or answer needs an updated, this must be done manually in all files involved.

    To solve this issue I had embedded headers, questions, hints and answer in a python file as strings and dictionaries and created a method to automatically generate the jupyter notebooks and the markdown files.

    Changing the source dictionaries and stings would change the output files.

    E.g: if a question needs update, just update it under -data_source.py- source/questions.ktx and then re-create all the files with the updated questions with:

    python generators.py
    

    Also, there is no more need to have several jupyter notebooks, since hints and answers can be queried programmatically with hint(n) and answer(n) from within the jupyter notebook.

    A jupyter notebook where to query a random question (flashcard style) had been added too.

    Pleaese note: binder and link in the readme may need to be updated, to keep the binder version in sync with the current repo!

    After merging the repo would look like: https://github.com/SebastianoF/numpy-100/tree/dev

    opened by SebastianoF 10
  • 27. round away from 0 solution is wrong

    27. round away from 0 solution is wrong

    trunc() should be round(), like this: print (np.round(Z + np.copysign(0.5, Z)))

    Example: an original value of 1.4 becomes 1.9, which then rounds to 2 (correct) or truncates to 1 (incorrect).

    Alternatively, this might be more readable, but maybe it teaches less. Maybe having multiple solutions for each problem would be most educational?

    Z[Z<0] = np.floor(Z[Z<0])
    Z[Z>0] = np.ceil(Z[Z>0])
    print (Z)
    
    opened by MarredCheese 8
  • An alternative solution for Q.76

    An alternative solution for Q.76

    1. Consider a one-dimensional array Z, build a two-dimensional array whose first row is (Z[0],Z[1],Z[2]) and each subsequent row is shifted by 1 (last row should be (Z[-3],Z[-2],Z[-1]) (★★★) hint: from numpy.lib import stride_tricks

    # Author: Joe Kington / Erik Rigtorp from numpy.lib import stride_tricks

    def rolling(a, window): shape = (a.size - window + 1, window) strides = (a.strides[0], a.strides[0]) return stride_tricks.as_strided(a, shape=shape, strides=strides) Z = rolling(np.arange(10), 3) print(Z)

    Same as the last issue, sliding_window_view is an easier function in NumPy. The new solution will be:

    Z = np.arange(10)
    print(sliding_window_view(Z, window_shape=(3)))
    
    opened by iamyifan 7
  • Separate wording from solution

    Separate wording from solution

    Hi !

    Very nice set of exercice, I am walking through it ! It would be nice to be able to scroll without the fear of seeing the answer and to do exercices in any order.

    Kind regards

    opened by lcetinsoy 7
  • A doubt about question No.74

    A doubt about question No.74

    1. Given an array C that is a bincount, how to produce an array A such that np.bincount(A) == C? (★★★)

    The given answer is shown as below. C = np.bincount([1,1,2,3,4,4,6]) A = np.repeat(np.arange(len(C)), C) print(A)

    There maybe a problem with the description of question No.74,the answer given can only solve the problem of Non-strictly increasing 1-d array not for all kind of 1-d array.

    opened by madeirak 6
  • 20 - solution returns index of 101st element

    20 - solution returns index of 101st element

    In question 20, it is assumed that the 100th element is at index 100, which is inconsistent with question 6, where the 5th element is assumed to be at index 4.

    opened by greenovid 6
  • Alternative solution  for 87.

    Alternative solution for 87.

    Numpy has (finally) "upstreamed" skimage's view_as_windows under the name sliding_window_view. With this we can write exercise 87 using more ~verbose~ clear syntax

    Z = np.ones((16,16))
    k = 4
    
    windows = np.lib.stride_tricks.sliding_window_view(Z, (k, k))
    relevant_windows = windows[::k, ::k, ...]
    S = np.sum(np.sum(relevant_windows, axis=-1), axis=-1)
    

    or if we prefer (potentially hard to maintain) one-liners

    Z = np.ones((16,16))
    k = 4
    
    S = np.sum(
        np.sum(
            np.lib.stride_tricks.sliding_window_view(Z, (k, k))[::k, ::k, ...]
            axis=-1), 
        axis=-1)
    
    opened by FirefoxMetzger 5
  • rougier/numpy-100 exercise - Que 16. alternate solution

    rougier/numpy-100 exercise - Que 16. alternate solution

    1. How to add a border (filled with 0's) around an existing array? (★☆☆)¶

    Proposed Solution -

    a=np.random.randint(1,10,(5,5)) print(a) a[0:,(0,-1)]=0 a[(0,-1),1:-1]=0 print(a)

    Pl. give feedback on this, I am new to Python.

    opened by sudhendra-github 5
  • Solution to

    Solution to "How to find rows of A that contain elements of each row of B" exercise

    Hi, It seems the solution given is wrong unless I misunderstood the question. The question is:

    Consider two arrays A and B of shape (8,3) and (2,2). How to find rows of A that contain elements of each row of B regardless of the order of the elements in B?

    The solution provided selects rows of A that contain (1) at least two unique elements of B (can be the same unique element of B repeated twice) or (2) at least one element that occurs 2 or more times in B. The rows of B are irrelevant. This seems not to answer the question correctly. Example:

    B = np.array([[0,1],[2,2]])
    A = np.array([[3,3,3],[0,1,3],[0,0,3],[1,1,3],[2,3,3],[0,2,3],[1,2,3]])
    

    The correct solution should pick rows of A that contains 0 and 2 or 1 and 2 (i.e. each row of B is represented in a given row of A) - so only rows 5 an 6. Current solution will also pick rows of A that contain [0,1], 2x 0, 2x 1 or 1x 2 - so rows 1,2,3,4.

    C = (A[..., np.newaxis, np.newaxis] == B)
    rows = (C.sum(axis=(1,2,3)) >= B.shape[1]).nonzero()[0]
    print(rows)
    
    [1 2 3 4 5 6]
    

    The correct solution could be:

    C = (A[..., np.newaxis, np.newaxis] == B)
    rows = np.where(C.any((3,1)).all(1))[0]
    print(rows)
    
    [5 6]
    
    opened by ibah 5
  • Fail to load the ipython notebook

    Fail to load the ipython notebook

    Hi, I got something wrong with the ipython notebook in Binder.

    what I got: 2016-08-31 22 13 31

    and when I opened the 100 numpy exercises.ipynb file with my ipython I got the same error. my ipython version: 4.2.1

    opened by robeatnik 5
  • Answer 81 improved - no stride_tricks, just numpy

    Answer 81 improved - no stride_tricks, just numpy

    I suggest to use an answer that is done only by numpy means. stride_tricks is defined elsewhere, it is less elegant and may confuse the user. Pls consider my proposed solution.

    opened by poedator 4
  • About question 19

    About question 19

    the alternative solution does not work for creating a checkerboard pattern.

    # Alternative solution: Using reshaping
    arr = np.ones(64,dtype=int)
    arr[::2]=0
    arr = arr.reshape((8,8))
    print(arr)
    

    this will be the output. [[0 1 0 1 0 1 0 1] [0 1 0 1 0 1 0 1] [0 1 0 1 0 1 0 1] [0 1 0 1 0 1 0 1] [0 1 0 1 0 1 0 1] [0 1 0 1 0 1 0 1] [0 1 0 1 0 1 0 1] [0 1 0 1 0 1 0 1]]

    But what we want is

    Z = np.zeros((8,8),dtype=int)
    Z[1::2,::2] = 1
    Z[::2,1::2] = 1
    print(Z)
    

    [[0 1 0 1 0 1 0 1] [1 0 1 0 1 0 1 0] [0 1 0 1 0 1 0 1] [1 0 1 0 1 0 1 0] [0 1 0 1 0 1 0 1] [1 0 1 0 1 0 1 0] [0 1 0 1 0 1 0 1] [1 0 1 0 1 0 1 0]]

    or

    z = np.zeros((8, 8), int)
    z[1::2, 1::2] = 1
    z[::2, ::2] = 1
    print(z)
    

    [[1 0 1 0 1 0 1 0] [0 1 0 1 0 1 0 1] [1 0 1 0 1 0 1 0] [0 1 0 1 0 1 0 1] [1 0 1 0 1 0 1 0] [0 1 0 1 0 1 0 1] [1 0 1 0 1 0 1 0] [0 1 0 1 0 1 0 1]]

    opened by hacshyac 1
  • Possibly Faster solution for #66

    Possibly Faster solution for #66

    I thought maybe using .view() may be faster. And it seems.

    w, h = 256,256
    
    l = np.random.randint(0,4,(h,w,3), dtype=np.uint8)
    l2 = np.zeros((h,w,4), dtype=np.uint8)
    l2[...,:3]=l[...,:3]
    l2[...,3] = l2[...,2]
    l3 = l2.view(dtype=np.int32)
    n= len(np.unique(l3))
    print(n)
    

    My %%timeit shows 2.68 ms ± 67.1 µs per loop (mean ± std. dev. of 7 runs, 100 loops each) compared to Mark Setchell's version 4 ms ± 259 µs per loop (mean ± std. dev. of 7 runs, 100 loops each) I think there might be some trade off between allocating new memory and using view.

    The solution utilizes the fact that using .view() we can simply use np.unique(, axis=None). Since color is composed of 3bytes I just copied the last byte and did 4-bytes comparison with .view(dtype=np.int32)

    opened by kwhkim 8
  • Q16 fancy indexing solution does not work

    Q16 fancy indexing solution does not work

    An example:

    >>> a = np.random.randint(0, 10, (3, 3))
    >>> a[:, [0, -1]] = 0
    >>> a[[0, -1], :] = 0
    >>> a
    array([[0, 0, 0],
           [0, 5, 0],
           [0, 0, 0]])
    

    Unless I'm understanding the question incorrectly here (but the np.pad solution is doing what I first expected), the fancy indexing solution does not work.

    opened by Objectivitix 1
  • Problem with initialise.py

    Problem with initialise.py

    Hey guys,

    I was going to start doing a bunch of exercises about numpy and to start I had to run the first cell. I appears to be an error with that. I am new with github. I would be happy if you could help me :) Below, I sent the screenshot duv1

    opened by 6oncv1o 1
Releases(1.1)
Owner
Nicolas P. Rougier
Researcher in computational and cognitive neuroscience supporting open source, open access and open science.
Nicolas P. Rougier
A PyTorch implementation of Deep SAD, a deep Semi-supervised Anomaly Detection method.

Deep SAD: A Method for Deep Semi-Supervised Anomaly Detection This repository provides a PyTorch implementation of the Deep SAD method presented in ou

Lukas Ruff 276 Jan 04, 2023
Docov - Light-weight, recursive docstring coverage analysis for python modules

docov Light-weight, recursive docstring coverage analysis for python modules. Ov

Richard D. Paul 3 Feb 04, 2022
Python Deep Dive Course - Accompanying Materials

Python Deep Dive Various Jupyter notebooks and Python sources associated with my Udemy Python 3 Deep Dive course series: Part 1: Mainly functional pro

Fred Baptiste 1.1k Dec 30, 2022
This is a repository for "100 days of code challenge" projects. You can reach all projects from beginner to professional which are written in Python.

100 Days of Code It's a challenge that aims to gain code practice and enhance programming knowledge. Day #1 Create a Band Name Generator It's actually

SelenNB 2 May 12, 2022
A Python package develop for transportation spatio-temporal big data processing, analysis and visualization.

English 中文版 TransBigData Introduction TransBigData is a Python package developed for transportation spatio-temporal big data processing, analysis and

Qing Yu 251 Jan 03, 2023
Python Programming (Practical) (1-25) Download 👇🏼

BCA-603 : Python Programming (Practical) (1-25) Download zip 🙂 🌟 How to run programs : Clone or download this repo to your computer. Unzip (If you d

Milan Jadav 2 Jun 02, 2022
Markdown documentation generator from Google docstrings

mkgendocs A Python package for automatically generating documentation pages in markdown for Python source files by parsing Google style docstring. The

Davide Nunes 44 Dec 18, 2022
This is a small project written to help build documentation for projects in less time.

Documentation-Builder This is a small project written to help build documentation for projects in less time. About This project builds documentation f

Tom Jebbo 2 Jan 17, 2022
Portfolio project for Code Institute Full Stack software development course.

Comic Sales tracker This project is the third milestone project for the Code Institute Diploma in Full Stack Software Development. You can see the fin

1 Jan 10, 2022
Paper and Code for "Curriculum Learning by Optimizing Learning Dynamics" (AISTATS 2021)

Curriculum Learning by Optimizing Learning Dynamics (DoCL) AISTATS 2021 paper: Title: Curriculum Learning by Optimizing Learning Dynamics [pdf] [appen

Tianyi Zhou 15 Dec 06, 2022
Data-Scrapping SEO - the project uses various data scrapping and Google autocompletes API tools to provide relevant points of different keywords so that search engines can be optimized

Data-Scrapping SEO - the project uses various data scrapping and Google autocompletes API tools to provide relevant points of different keywords so that search engines can be optimized; as this infor

Vibhav Kumar Dixit 2 Jul 18, 2022
The tutorial is a collection of many other resources and my own notes

Why we need CTC? --- looking back on history 1.1. About CRNN 1.2. from Cross Entropy Loss to CTC Loss Details about CTC 2.1. intuition: forward algor

手写AI 7 Sep 19, 2022
Documentation for the lottie file format

Lottie Documentation This repository contains both human-readable and machine-readable documentation about the Lottie format The documentation is avai

LottieFiles 25 Jan 05, 2023
Python bindings to OpenSlide

OpenSlide Python OpenSlide Python is a Python interface to the OpenSlide library. OpenSlide is a C library that provides a simple interface for readin

OpenSlide 297 Dec 21, 2022
Legacy python processor for AsciiDoc

AsciiDoc.py This branch is tracking the alpha, in-progress 10.x release. For the stable 9.x code, please go to the 9.x branch! AsciiDoc is a text docu

AsciiDoc.py 178 Dec 25, 2022
Preview title and other information about links sent to chats.

Link Preview A small plugin for Nicotine+ to display preview information like title and description about links sent in chats. Plugin created with Nic

Nick 0 Sep 05, 2021
MkDocs plugin for setting revision date from git per markdown file

mkdocs-git-revision-date-plugin MkDocs plugin that displays the last revision date of the current page of the documentation based on Git. The revision

Terry Zhao 48 Jan 06, 2023
A Sublime Text plugin to select a default syntax dialect

Default Syntax Chooser This Sublime Text 4 plugin provides the set_default_syntax_dialect command. This command manipulates a syntax file (e.g.: SQL.s

3 Jan 14, 2022
xeuledoc - Fetch information about a public Google document.

xeuledoc - Fetch information about a public Google document.

Malfrats Industries 651 Dec 27, 2022
Spin-off Notice: the modules and functions used by our research notebooks have been refactored into another repository

Fecon235 - Notebooks for financial economics. Keywords: Jupyter notebook pandas Federal Reserve FRED Ferbus GDP CPI PCE inflation unemployment wage income debt Case-Shiller housing asset portfolio eq

Adriano 825 Dec 27, 2022