[ICCV, 2021] Cloud Transformers: A Universal Approach To Point Cloud Processing Tasks

Overview

Cloud Transformers: A Universal Approach To Point Cloud Processing Tasks

This is an official PyTorch code repository of the paper "Cloud Transformers: A Universal Approach To Point Cloud Processing Tasks " (ICCV, 2021).

Here, we present a versatile point cloud processing block that yields state-of-the-art results on many tasks.
The key idea is to process point clouds with many cheap low-dimensional different projections followed by standard convolutions. And we do so both in parallel and sequentially.

Datasets

We provide links to the datasets we used to train/evaluate. After unpacking and preparation, please edit the dataset path (data:path field) in configs/*.yaml

Pre-trained models

We provide our pre-trained models' weights in a single archive.

Building Dependencies

To install and build all the modules required, please run:

bash ./install_deps.sh

Code Structure

In layers/cloud_transform.py the core operations are implemented (rasterization Splat and de-rasterization Slice). While in layers\mutihead_ct_*.py we provide slightly different versions of Multi-Headed Cloud Transform (MHCT).

The model zoo is situated in model_zoo, where the models for corresponding tasks are constructed of Multi-Headed Cloud Transforms.

Run

We train our models in multi-GPU setting using DistributedDataParallel. To train on n GPUs, please run the following commands:

python train_${SCRIPT_NAME}.py ${EXP_NAME} -c configs/${CONFIG_NAME}.yaml --master localhost:3315 --rank 0 --num_nodes n
...
python train_${SCRIPT_NAME}.py ${EXP_NAME} -c configs/${CONFIG_NAME}.yaml --master localhost:3315 --rank  --num_nodes n

The semantics for evaluation scripts is almost the same:

python eval_${SCRIPT_NAME}.py ${EXP_NAME} -c configs/eval/${CONFIG_NAME}.yaml

Cite

If you find our work helpful, please do not hesitate to cite us.

@inproceedings{mazur2021cloudtransformers,
  title={Cloud Transformers: A Universal Approach To Point Cloud Processing Tasks},
  author={Mazur, Kirill and Lempitsky, Victor},
  booktitle={International Conference on Computer Vision (ICCV)},
  year={2021}
}
Owner
Visual Understanding Lab @ Samsung AI Center Moscow
Visual Understanding Lab @ Samsung AI Center Moscow
learn how to use Gesture Control to change the volume of a computer

Volume-Control-using-gesture In this project we are going to learn how to use Gesture Control to change the volume of a computer. We first look into h

Diwas Pandey 49 Sep 22, 2022
InverseRenderNet: Learning single image inverse rendering, CVPR 2019.

InverseRenderNet: Learning single image inverse rendering !! Check out our new work InverseRenderNet++ paper and code, which improves the inverse rend

Ye Yu 141 Dec 20, 2022
Official code for ROCA: Robust CAD Model Retrieval and Alignment from a Single Image (CVPR 2022)

ROCA: Robust CAD Model Alignment and Retrieval from a Single Image (CVPR 2022) Code release of our paper ROCA. Check out our video, paper, and website

123 Dec 25, 2022
A simple OCR API server, seriously easy to be deployed by Docker, on Heroku as well

ocrserver Simple OCR server, as a small working sample for gosseract. Try now here https://ocr-example.herokuapp.com/, and deploy your own now. Deploy

Hiromu OCHIAI 541 Dec 28, 2022
RepMLP: Re-parameterizing Convolutions into Fully-connected Layers for Image Recognition

RepMLP RepMLP: Re-parameterizing Convolutions into Fully-connected Layers for Image Recognition Released the code of RepMLP together with an example o

260 Jan 03, 2023
Sort By Face

Sort-By-Face This is an application with which you can either sort all the pictures by faces from a corpus of photos or retrieve all your photos from

0 Nov 29, 2021
SemTorch

SemTorch This repository contains different deep learning architectures definitions that can be applied to image segmentation. All the architectures a

David Lacalle Castillo 154 Dec 07, 2022
Machine Leaning applied to denoise images to improve OCR Accuracy

Machine Learning to Denoise Images for Better OCR Accuracy This project is an adaptation of this tutorial and used only for learning purposes: https:/

Antonio Bri Pérez 2 Nov 16, 2022
Semantic-based Patch Detection for Binary Programs

PMatch Semantic-based Patch Detection for Binary Programs Requirement tensorflow-gpu 1.13.1 numpy 1.16.2 scikit-learn 0.20.3 ssdeep 3.4 Usage tar -xvz

Mr.Curiosity 3 Sep 02, 2022
Handwritten_Text_Recognition

Deep Learning framework for Line-level Handwritten Text Recognition Short presentation of our project Introduction Installation 2.a Install conda envi

24 Jul 15, 2022
OCR powered screen-capture tool to capture information instead of images

NormCap OCR powered screen-capture tool to capture information instead of images. Links: Repo | PyPi | Releases | Changelog | FAQs Content: Quickstart

575 Dec 31, 2022
Library used to deskew a scanned document

Deskew //Note: Skew is measured in degrees. Deskewing is a process whereby skew is removed by rotating an image by the same amount as its skew but in

Stéphane Brunner 273 Jan 06, 2023
7th place solution

SIIM-FISABIO-RSNA-COVID-19-Detection 7th place solution Validation: We used iterative-stratification with 5 folds (https://github.com/trent-b/iterativ

11 Jul 17, 2022
fishington.io bot with OpenCV and NumPy

fishington.io-bot fishington.io bot with using OpenCV and NumPy bot can continue to fishing fully automatically how to use Open cmd in fishington.io-b

Bahadır Araz 77 Jan 02, 2023
Scan the MRZ code of a passport and extract the firstname, lastname, passport number, nationality, date of birth, expiration date and personal numer.

PassportScanner Works with 2 and 3 line identity documents. What is this With PassportScanner you can use your camera to scan the MRZ code of a passpo

Edwin Vermeer 441 Dec 24, 2022
Steve Tu 71 Dec 30, 2022
[EMNLP 2021] Improving and Simplifying Pattern Exploiting Training

ADAPET This repository contains the official code for the paper: "Improving and Simplifying Pattern Exploiting Training". The model improves and simpl

Rakesh R Menon 138 Dec 26, 2022
Fully-automated scripts for collecting AI-related papers

AI-Paper-Collector Web demo: https://ai-paper-collector.vercel.app/ (recommended) Colab notebook: here Motivation Fully-automated scripts for collecti

772 Dec 30, 2022
Detecting Text in Natural Image with Connectionist Text Proposal Network (ECCV'16)

Detecting Text in Natural Image with Connectionist Text Proposal Network The codes are used for implementing CTPN for scene text detection, described

Tian Zhi 1.3k Dec 22, 2022
Detect textlines in document images

Textline Detection Detect textlines in document images Introduction This tool performs border, region and textline detection from document image data

QURATOR-SPK 70 Jun 30, 2022