An AI for Music Generation

Overview

MuseGAN

MuseGAN is a project on music generation. In a nutshell, we aim to generate polyphonic music of multiple tracks (instruments). The proposed models are able to generate music either from scratch, or by accompanying a track given a priori by the user.

We train the model with training data collected from Lakh Pianoroll Dataset to generate pop song phrases consisting of bass, drums, guitar, piano and strings tracks.

Sample results are available here.

Looking for a PyTorch version? Check out this repository.

Prerequisites

Below we assume the working directory is the repository root.

Install dependencies

  • Using pipenv (recommended)

    Make sure pipenv is installed. (If not, simply run pip install pipenv.)

    # Install the dependencies
    pipenv install
    # Activate the virtual environment
    pipenv shell
  • Using pip

    # Install the dependencies
    pip install -r requirements.txt

Prepare training data

The training data is collected from Lakh Pianoroll Dataset (LPD), a new multitrack pianoroll dataset.

# Download the training data
./scripts/download_data.sh
# Store the training data to shared memory
./scripts/process_data.sh

You can also download the training data manually (train_x_lpd_5_phr.npz).

As pianoroll matrices are generally sparse, we store only the indices of nonzero elements and the array shape into a npz file to save space, and later restore the original array. To save some training data data into this format, simply run np.savez_compressed("data.npz", shape=data.shape, nonzero=data.nonzero())

Scripts

We provide several shell scripts for easy managing the experiments. (See here for a detailed documentation.)

Below we assume the working directory is the repository root.

Train a new model

  1. Run the following command to set up a new experiment with default settings.

    # Set up a new experiment
    ./scripts/setup_exp.sh "./exp/my_experiment/" "Some notes on my experiment"
  2. Modify the configuration and model parameter files for experimental settings.

  3. You can either train the model:

    # Train the model
    ./scripts/run_train.sh "./exp/my_experiment/" "0"

    or run the experiment (training + inference + interpolation):

    # Run the experiment
    ./scripts/run_exp.sh "./exp/my_experiment/" "0"

Collect training data

Run the following command to collect training data from MIDI files.

# Collect training data
./scripts/collect_data.sh "./midi_dir/" "data/train.npy"

Use pretrained models

  1. Download pretrained models

    # Download the pretrained models
    ./scripts/download_models.sh

    You can also download the pretrained models manually (pretrained_models.tar.gz).

  2. You can either perform inference from a trained model:

    # Run inference from a pretrained model
    ./scripts/run_inference.sh "./exp/default/" "0"

    or perform interpolation from a trained model:

    # Run interpolation from a pretrained model
    ./scripts/run_interpolation.sh "./exp/default/" "0"

Outputs

By default, samples will be generated alongside the training. You can disable this behavior by setting save_samples_steps to zero in the configuration file (config.yaml). The generated will be stored in the following three formats by default.

  • .npy: raw numpy arrays
  • .png: image files
  • .npz: multitrack pianoroll files that can be loaded by the Pypianoroll package

You can disable saving in a specific format by setting save_array_samples, save_image_samples and save_pianoroll_samples to False in the configuration file.

The generated pianorolls are stored in .npz format to save space and processing time. You can use the following code to write them into MIDI files.

from pypianoroll import Multitrack

m = Multitrack('./test.npz')
m.write('./test.mid')

Sample Results

Some sample results can be found in ./exp/ directory. More samples can be downloaded from the following links.

Papers

Convolutional Generative Adversarial Networks with Binary Neurons for Polyphonic Music Generation
Hao-Wen Dong and Yi-Hsuan Yang
in Proceedings of the 19th International Society for Music Information Retrieval Conference (ISMIR), 2018.
[website] [arxiv] [paper] [slides(long)] [slides(short)] [poster] [code]

MuseGAN: Multi-track Sequential Generative Adversarial Networks for Symbolic Music Generation and Accompaniment
Hao-Wen Dong,* Wen-Yi Hsiao,* Li-Chia Yang and Yi-Hsuan Yang, (*equal contribution)
in Proceedings of the 32nd AAAI Conference on Artificial Intelligence (AAAI), 2018.
[website] [arxiv] [paper] [slides] [code]

MuseGAN: Demonstration of a Convolutional GAN Based Model for Generating Multi-track Piano-rolls
Hao-Wen Dong,* Wen-Yi Hsiao,* Li-Chia Yang and Yi-Hsuan Yang (*equal contribution)
in Late-Breaking Demos of the 18th International Society for Music Information Retrieval Conference (ISMIR), 2017. (two-page extended abstract)
[paper] [poster]

Owner
Hao-Wen Dong
PhD Candidate in Computer Science at UC San Diego | Previous Intern at Dolby and Yamaha | Music x AI
Hao-Wen Dong
Voice to Text using Raspberry Pi

This module will help to convert your voice (speech) into text using Speech Recognition Library. You can control the devices or you can perform the desired tasks by the word recognition

Raspberry_Pi Pakistan 2 Dec 15, 2021
Audio features extraction

Yaafe Yet Another Audio Feature Extractor Build status Branch master : Branch dev : Anaconda : Install Conda Yaafe can be easily install with conda. T

Yaafe 231 Dec 26, 2022
Use python MIDI to write some simple music

Use Python MIDI to write songs

小宝 1 Nov 19, 2021
Code for paper 'Audio-Driven Emotional Video Portraits'.

Audio-Driven Emotional Video Portraits [CVPR2021] Xinya Ji, Zhou Hang, Kaisiyuan Wang, Wayne Wu, Chen Change Loy, Xun Cao, Feng Xu [Project] [Paper] G

197 Dec 31, 2022
A small project where I identify notes and key harmonies in a piece of music and use them further to recreate and generate the same piece of music through Python

A small project where I identify notes and key harmonies in a piece of music and use them further to recreate and generate the same piece of music through Python

5 Oct 07, 2022
Guide & Examples to create deeplearning gstreamer plugins and use them in your pipeline

upai-gst-dl-plugins Guide & Examples to create deeplearning gstreamer plugins and use them in your pipeline Introduction Thanks to the work done by @j

UPAI.IO 11 Dec 11, 2022
Pyrogram bot to automate streaming music in voice chats

Pyrogram bot to automate streaming music in voice chats Help If you face an error, want to discuss this project or get support for it, join it's group

Roj 124 Oct 21, 2022
Inner ear models for Python

cochlea cochlea is a collection of inner ear models. All models are easily accessible as Python functions. They take sound signal as input and return

98 Jan 05, 2023
Code for "Audio-driven Talking Face Video Generation with Learning-based Personalized Head Pose"

Audio-driven Talking Face Video Generation with Learning-based Personalized Head Pose We provide PyTorch implementations for our arxiv paper "Audio-dr

Ran Yi 497 Jan 09, 2023
Music player and music library manager for Linux, Windows, and macOS

Ex Falso / Quod Libet - A Music Library / Editor / Player Quod Libet is a music management program. It provides several different ways to view your au

Quod Libet 1.2k Jan 07, 2023
Using python to generate a bat script of repetitive lines of code that differ in some way but can sort out a group of audio files according to their common names

Batch Sorting Using python to generate a bat script of repetitive lines of code that differ in some way but can sort out a group of audio files accord

David Mainoo 1 Oct 29, 2021
A voice assistant which can handle your everyday task and allows you to book items from your favourite store!

Voicely Table of Contents About The Project Built With Getting Started Prerequisites Installation Usage Roadmap Contributing License Contact Acknowled

Awantika Nigam 2 Nov 17, 2021
Port Hitsuboku Kumi Chinese CVVC voicebank to deepvocal. / 筆墨クミDeepvocal中文音源

Hitsuboku Kumi (筆墨クミ) is a UTAU virtual singer developed by Cubialpha. This project ports Hitsuboku Kumi Chinese CVVC voicebank to deepvocal. This is the first open-source deepvocal voicebank on Gith

8 Apr 26, 2022
A simple python script to play bell sound in your system infinitely, just for fun and experimental purposes

A simple python script to play bell sound in your system infinitely, just for fun and experimental purposes

نافع الهلالي 1 Oct 29, 2021
Sync Toolbox - Python package with reference implementations for efficient, robust, and accurate music synchronization based on dynamic time warping (DTW)

Sync Toolbox - Python package with reference implementations for efficient, robust, and accurate music synchronization based on dynamic time warping (DTW)

Meinard Mueller 66 Jan 02, 2023
Royal Music You can play music and video at a time in vc

Royals-Music Royal Music You can play music and video at a time in vc Commands SOON String STRING_SESSION Deployment 🎖 Credits • 🇸ᴏᴍʏᴀ⃝🇯ᴇᴇᴛ • 🇴ғғɪ

2 Nov 23, 2021
Codes for "Efficient Long-Range Attention Network for Image Super-resolution"

ELAN Codes for "Efficient Long-Range Attention Network for Image Super-resolution", arxiv link. Dependencies & Installation Please refer to the follow

xindong zhang 124 Dec 22, 2022
Minimal command-line music player written in Python

pyms Minimal command-line music player written in Python. Designed with elegance and minimalism. Resizes dynamically with your terminal. Dependencies

12 Sep 23, 2022
Powerful, simple, audio tag editor for GNU/Linux

puddletag puddletag is an audio tag editor (primarily created) for GNU/Linux similar to the Windows program, Mp3tag. Unlike most taggers for GNU/Linux

341 Dec 26, 2022
Pythonic bindings for FFmpeg's libraries.

PyAV PyAV is a Pythonic binding for the FFmpeg libraries. We aim to provide all of the power and control of the underlying library, but manage the gri

PyAV 1.8k Jan 03, 2023