LaneAF: Robust Multi-Lane Detection with Affinity Fields

Related tags

Deep LearningLaneAF
Overview

PWC

PWC

LaneAF: Robust Multi-Lane Detection with Affinity Fields

This repository contains Pytorch code for training and testing LaneAF lane detection models introduced in this paper.

Installation

  1. Clone this repository
  2. Install Anaconda
  3. Create a virtual environment and install all dependencies:
conda create -n laneaf pip python=3.6
source activate laneaf
pip install numpy scipy matplotlib pillow scikit-learn
pip install opencv-python
pip install https://download.pytorch.org/whl/cu101/torch-1.7.0%2Bcu101-cp36-cp36m-linux_x86_64.whl
pip install https://download.pytorch.org/whl/cu101/torchvision-0.8.1%2Bcu101-cp36-cp36m-linux_x86_64.whl
source deactivate

You can alternately find your desired torch/torchvision wheel from here.

  1. Clone and make DCNv2:
cd models/dla
git clone https://github.com/lbin/DCNv2.git
cd DCNv2
./make.sh

TuSimple

The entire TuSimple dataset should be downloaded and organized as follows:

└── TuSimple/
    ├── clips/
    |   └── .
    |   └── .
    ├── label_data_0313.json
    ├── label_data_0531.json
    ├── label_data_0601.json
    ├── test_tasks_0627.json
    ├── test_baseline.json
    └── test_label.json

The model requires ground truth segmentation labels during training. You can generate these for the entire dataset as follows:

source activate laneaf # activate virtual environment
python datasets/tusimple.py --dataset-dir=/path/to/TuSimple/
source deactivate # exit virtual environment

Training

LaneAF models can be trained on the TuSimple dataset as follows:

source activate laneaf # activate virtual environment
python train_tusimple.py --dataset-dir=/path/to/TuSimple/ --random-transforms
source deactivate # exit virtual environment

Config files, logs, results and snapshots from running the above scripts will be stored in the LaneAF/experiments/tusimple folder by default.

Inference

Trained LaneAF models can be run on the TuSimple test set as follows:

source activate laneaf # activate virtual environment
python infer_tusimple.py --dataset-dir=/path/to/TuSimple/ --snapshot=/path/to/trained/model/snapshot --save-viz
source deactivate # exit virtual environment

This will generate outputs in the TuSimple format and also produce benchmark metrics using their official implementation.

CULane

The entire CULane dataset should be downloaded and organized as follows:

└── CULane/
    ├── driver_*_*frame/
    ├── laneseg_label_w16/
    ├── laneseg_label_w16_test/
    └── list/

Training

LaneAF models can be trained on the CULane dataset as follows:

source activate laneaf # activate virtual environment
python train_culane.py --dataset-dir=/path/to/CULane/ --random-transforms
source deactivate # exit virtual environment

Config files, logs, results and snapshots from running the above scripts will be stored in the LaneAF/experiments/culane folder by default.

Inference

Trained LaneAF models can be run on the CULane test set as follows:

source activate laneaf # activate virtual environment
python infer_culane.py --dataset-dir=/path/to/CULane/ --snapshot=/path/to/trained/model/snapshot --save-viz
source deactivate # exit virtual environment

This will generate outputs in the CULane format. You can then use their official code to evaluate the model on the CULane benchmark.

Unsupervised Llamas

The Unsupervised Llamas dataset should be downloaded and organized as follows:

└── Llamas/
    ├── color_images/
    |   ├── train/
    |   ├── valid/
    |   └── test/
    └── labels/
        ├── train/
        └── valid/

Training

LaneAF models can be trained on the Llamas dataset as follows:

source activate laneaf # activate virtual environment
python train_llamas.py --dataset-dir=/path/to/Llamas/ --random-transforms
source deactivate # exit virtual environment

Config files, logs, results and snapshots from running the above scripts will be stored in the LaneAF/experiments/llamas folder by default.

Inference

Trained LaneAF models can be run on the Llamas test set as follows:

source activate laneaf # activate virtual environment
python infer_llamas.py --dataset-dir=/path/to/Llamas/ --snapshot=/path/to/trained/model/snapshot --save-viz
source deactivate # exit virtual environment

This will generate outputs in the CULane format and Llamas format for the Lane Approximations benchmark. Note that the results produced in the Llamas format could be inaccurate because we guess the IDs of the indivudal lanes.

Pre-trained Weights

You can download our pre-trained model weights using this link.

Citation

If you find our code and/or models useful in your research, please consider citing the following papers:

@article{abualsaud2021laneaf,
title={LaneAF: Robust Multi-Lane Detection with Affinity Fields},
author={Abualsaud, Hala and Liu, Sean and Lu, David and Situ, Kenny and Rangesh, Akshay and Trivedi, Mohan M},
journal={arXiv preprint arXiv:2103.12040},
year={2021}
}
Code for training and evaluation of the model from "Language Generation with Recurrent Generative Adversarial Networks without Pre-training"

Language Generation with Recurrent Generative Adversarial Networks without Pre-training Code for training and evaluation of the model from "Language G

Amir Bar 253 Sep 14, 2022
A python implementation of Yolov5 to detect fire or smoke in the wild in Jetson Xavier nx and Jetson nano

yolov5-fire-smoke-detect-python A python implementation of Yolov5 to detect fire or smoke in the wild in Jetson Xavier nx and Jetson nano You can see

20 Dec 15, 2022
Trying to understand alias-free-gan.

alias-free-gan-explanation Trying to understand alias-free-gan in my own way. [Chinese Version 中文版本] CC-BY-4.0 License. Tzu-Heng Lin motivation of thi

Tzu-Heng Lin 12 Mar 17, 2022
Arch-Net: Model Distillation for Architecture Agnostic Model Deployment

Arch-Net: Model Distillation for Architecture Agnostic Model Deployment The official implementation of Arch-Net: Model Distillation for Architecture A

MEGVII Research 22 Jan 05, 2023
Dark Finix: All in one hacking framework with almost 100 tools

Dark Finix - Hacking Framework. Dark Finix is a all in one hacking framework wit

Md. Nur habib 2 Feb 18, 2022
Machine learning library for fast and efficient Gaussian mixture models

This repository contains code which implements the Stochastic Gaussian Mixture Model (S-GMM) for event-based datasets Dependencies CMake Premake4 Blaz

Omar Oubari 1 Dec 19, 2022
A modified version of DeepMind's Alphafold2 to divide CPU part (MSA and template searching) and GPU part (prediction model)

ParallelFold Author: Bozitao Zhong This is a modified version of DeepMind's Alphafold2 to divide CPU part (MSA and template searching) and GPU part (p

Bozitao Zhong 77 Dec 22, 2022
Inference pipeline for our participation in the FeTA challenge 2021.

feta-inference Inference pipeline for our participation in the FeTA challenge 2021. Team name: TRABIT Installation Download the two folders in https:/

Lucas Fidon 2 Apr 13, 2022
A PyTorch Image-Classification With AlexNet And ResNet50.

PyTorch 图像分类 依赖库的下载与安装 在终端中执行 pip install -r -requirements.txt 完成项目依赖库的安装 使用方式 数据集的准备 STL10 数据集 下载:STL-10 Dataset 存储位置:将下载后的数据集中 train_X.bin,train_y.b

FYH 4 Feb 22, 2022
Official code of the paper "Expanding Low-Density Latent Regions for Open-Set Object Detection" (CVPR 2022)

OpenDet Expanding Low-Density Latent Regions for Open-Set Object Detection (CVPR2022) Jiaming Han, Yuqiang Ren, Jian Ding, Xingjia Pan, Ke Yan, Gui-So

csuhan 64 Jan 07, 2023
CodeContests is a competitive programming dataset for machine-learning

CodeContests CodeContests is a competitive programming dataset for machine-learning. This dataset was used when training AlphaCode. It consists of pro

DeepMind 1.6k Jan 08, 2023
A facial recognition doorbell system using a Raspberry Pi

Facial Recognition Doorbell This project expands on the person-detecting doorbell system to allow it to identify faces, and announce names accordingly

rydercalmdown 22 Apr 15, 2022
PyTorch implementation of Value Iteration Networks (VIN): Clean, Simple and Modular. Visualization in Visdom.

VIN: Value Iteration Networks This is an implementation of Value Iteration Networks (VIN) in PyTorch to reproduce the results.(TensorFlow version) Key

Xingdong Zuo 215 Dec 07, 2022
Karate Club: An API Oriented Open-source Python Framework for Unsupervised Learning on Graphs (CIKM 2020)

Karate Club is an unsupervised machine learning extension library for NetworkX. Please look at the Documentation, relevant Paper, Promo Video, and Ext

Benedek Rozemberczki 1.8k Jan 07, 2023
Project page of the paper 'Analyzing Perception-Distortion Tradeoff using Enhanced Perceptual Super-resolution Network' (ECCVW 2018)

EPSR (Enhanced Perceptual Super-resolution Network) paper This repo provides the test code, pretrained models, and results on benchmark datasets of ou

Subeesh Vasu 78 Nov 19, 2022
Consumer Fairness in Recommender Systems: Contextualizing Definitions and Mitigations

Consumer Fairness in Recommender Systems: Contextualizing Definitions and Mitigations This is the repository for the paper Consumer Fairness in Recomm

7 Nov 30, 2022
Colar: Effective and Efficient Online Action Detection by Consulting Exemplars, CVPR 2022.

Colar: Effective and Efficient Online Action Detection by Consulting Exemplars This repository is the official implementation of Colar. In this work,

LeYang 246 Dec 13, 2022
An index of recommendation algorithms that are based on Graph Neural Networks.

An index of recommendation algorithms that are based on Graph Neural Networks.

FIB LAB, Tsinghua University 564 Jan 07, 2023
NAACL'2021: Factual Probing Is [MASK]: Learning vs. Learning to Recall

OptiPrompt This is the PyTorch implementation of the paper Factual Probing Is [MASK]: Learning vs. Learning to Recall. We propose OptiPrompt, a simple

Princeton Natural Language Processing 150 Dec 20, 2022
Rethinking Transformer-based Set Prediction for Object Detection

Rethinking Transformer-based Set Prediction for Object Detection Here are the code for the ICCV paper. The code is adapted from Detectron2 and AdelaiD

Zhiqing Sun 62 Dec 03, 2022