Google Search Results via SERP API pip Python Package

Overview

Google Search Results in Python

Package Build

This Python package is meant to scrape and parse search results from Google, Bing, Baidu, Yandex, Yahoo, Home depot, Ebay and more.. using SerpApi.

The following services are provided:

SerpApi provides a script builder to get you started quickly.

Installation

Python 3.7+

pip install google-search-results

Link to the python package page

Quick start

from serpapi import GoogleSearch
search = GoogleSearch({
    "q": "coffee", 
    "location": "Austin,Texas",
    "api_key": "<your secret api key>"
  })
result = search.get_dict()

This example runs a search about "coffee" using your secret api key.

The SerpApi service (backend)

  • searches on Google using the search: q = "coffee"
  • parses the messy HTML responses
  • return a standardizes JSON response The GoogleSearch class
  • Format the request
  • Execute GET http request against SerpApi service
  • Parse JSON response into a dictionary Et voila..

Alternatively, you can search:

  • Bing using BingSearch class
  • Baidu using BaiduSearch class
  • Yahoo using YahooSearch class
  • duckduckgo using DuckDuckGoSearch class
  • Ebay using EbaySearch class
  • Yandex using YandexSearch class
  • HomeDepot using HomeDepotSearch class
  • GoogleScholar using GoogleScholarSearch class
  • Youtube using YoutubeSearch class
  • Walmart using WalmartSearch
  • Apple App Store using AppleAppStoreSearch class
  • Naver using NaverSearch class

See the playground to generate your code.

Summary

Google Search API capability

Source code.

params = {
  "q": "coffee",
  "location": "Location Requested", 
  "device": "desktop|mobile|tablet",
  "hl": "Google UI Language",
  "gl": "Google Country",
  "safe": "Safe Search Flag",
  "num": "Number of Results",
  "start": "Pagination Offset",
  "api_key": "Your SERP API Key", 
  # To be match
  "tbm": "nws|isch|shop", 
  # To be search
  "tbs": "custom to be search criteria",
  # allow async request
  "async": "true|false",
  # output format
  "output": "json|html"
}

# define the search search
search = GoogleSearch(params)
# override an existing parameter
search.params_dict["location"] = "Portland"
# search format return as raw html
html_results = search.get_html()
# parse results
#  as python Dictionary
dict_results = search.get_dict()
#  as JSON using json package
json_results = search.get_json()
#  as dynamic Python object
object_result = search.get_object()

Link to the full documentation

see below for more hands on examples.

How to set SERP API key

You can get an API key here if you don't already have one: https://serpapi.com/users/sign_up

The SerpApi api_key can be set globally:

GoogleSearch.SERP_API_KEY = "Your Private Key"

The SerpApi api_key can be provided for each search:

query = GoogleSearch({"q": "coffee", "serp_api_key": "Your Private Key"})

Example by specification

We love true open source, continuous integration and Test Drive Development (TDD). We are using RSpec to test our infrastructure around the clock to achieve the best QoS (Quality Of Service).

The directory test/ includes specification/examples.

Set your api key.

export API_KEY="your secret key"

Run test

make test

Location API

from serpapi import GoogleSearch
search = GoogleSearch({})
location_list = search.get_location("Austin", 3)
print(location_list)

it prints the first 3 location matching Austin (Texas, Texas, Rochester)

[   {   'canonical_name': 'Austin,TX,Texas,United States',
        'country_code': 'US',
        'google_id': 200635,
        'google_parent_id': 21176,
        'gps': [-97.7430608, 30.267153],
        'id': '585069bdee19ad271e9bc072',
        'keys': ['austin', 'tx', 'texas', 'united', 'states'],
        'name': 'Austin, TX',
        'reach': 5560000,
        'target_type': 'DMA Region'},
        ...]

Search Archive API

The search result are stored in temporary cached. The previous search can be retrieve from the the cache for free.

from serpapi import GoogleSearch
search = GoogleSearch({"q": "Coffee", "location": "Austin,Texas"})
search_result = search.get_dictionary()
assert search_result.get("error") == None
search_id = search_result.get("search_metadata").get("id")
print(search_id)

Now let retrieve the previous search from the archive.

archived_search_result = GoogleSearch({}).get_search_archive(search_id, 'json')
print(archived_search_result.get("search_metadata").get("id"))

it prints the search result from the archive.

Account API

from serpapi import GoogleSearch
search = GoogleSearch({})
account = search.get_account()

it prints your account information.

Search Bing

from serpapi import BingSearch
search = BingSearch({"q": "Coffee", "location": "Austin,Texas"})
data = search.get_dict()

this code prints baidu search results for coffee as a Dictionary.

https://serpapi.com/bing-search-api

Search Baidu

from serpapi import BaiduSearch
search = BaiduSearch({"q": "Coffee"})
data = search.get_dict()

this code prints baidu search results for coffee as a Dictionary. https://serpapi.com/baidu-search-api

Search Yandex

from serpapi import YandexSearch
search = YandexSearch({"text": "Coffee"})
data = search.get_dict()

this code prints yandex search results for coffee as a Dictionary.

https://serpapi.com/yandex-search-api

Search Yahoo

from serpapi import YahooSearch
search = YahooSearch({"p": "Coffee"})
data = search.get_dict()

this code prints yahoo search results for coffee as a Dictionary.

https://serpapi.com/yahoo-search-api

Search Ebay

from serpapi import EbaySearch
search = EbaySearch({"_nkw": "Coffee"})
data = search.get_dict()

this code prints ebay search results for coffee as a Dictionary.

https://serpapi.com/ebay-search-api

Search Home depot

from serpapi import HomeDepotSearch
search = HomeDepotSearch({"q": "chair"})
data = search.get_dict()

this code prints home depot search results for chair as Dictionary.

https://serpapi.com/home-depot-search-api

Search Youtube

from serpapi import HomeDepotSearch
search = YoutubeSearch({"q": "chair"})
data = search.get_dict()

this code prints youtube search results for chair as Dictionary.

https://serpapi.com/youtube-search-api

Search Google Scholar

from serpapi import GoogleScholarSearch
search = GoogleScholarSearch({"q": "Coffee"})
data = search.get_dict()

this code prints Google Scholar search results.

Search Walmart

from serpapi import WalmartSearch
search = WalmartSearch({"query": "chair"})
data = search.get_dict()

this code prints Google Scholar search results.

Search Youtube

from serpapi import YoutubeSearch
search = YoutubeSearch({"search_query": "chair"})
data = search.get_dict()

this code prints Google Scholar search results.

Search Apple Store

from serpapi import AppleAppStoreSearch
search = AppleAppStoreSearch({"term": "Coffee"})
data = search.get_dict()

this code prints Google Scholar search results.

Search Naver

from serpapi import NaverSearch
search = NaverSearch({"query": "chair"})
data = search.get_dict()

this code prints Google Scholar search results.

Generic search with SerpApiClient

from serpapi import SerpApiClient
query = {"q": "Coffee", "location": "Austin,Texas", "engine": "google"}
search = SerpApiClient(query)
data = search.get_dict()

This class enables to interact with any search engine supported by SerpApi.com

Search Google Images

from serpapi import GoogleSearch
search = GoogleSearch({"q": "coffe", "tbm": "isch"})
for image_result in search.get_dict()['images_results']:
    link = image_result["original"]
    try:
        print("link: " + link)
        # wget.download(link, '.')
    except:
        pass

this code prints all the images links, and download image if you un-comment the line with wget (linux/osx tool to download image).

This tutorial covers more ground on this topic. https://github.com/serpapi/showcase-serpapi-tensorflow-keras-image-training

Search Google News

from serpapi import GoogleSearch
search = GoogleSearch({
    "q": "coffe",   # search search
    "tbm": "nws",  # news
    "tbs": "qdr:d", # last 24h
    "num": 10
})
for offset in [0,1,2]:
    search.params_dict["start"] = offset * 10
    data = search.get_dict()
    for news_result in data['news_results']:
        print(str(news_result['position'] + offset * 10) + " - " + news_result['title'])

this script prints the first 3 pages of the news title for the last 24h.

Search Google Shopping

from serpapi import GoogleSearch
search = GoogleSearch({
    "q": "coffe",   # search search
    "tbm": "shop",  # news
    "tbs": "p_ord:rv", # last 24h
    "num": 100
})
data = search.get_dict()
for shopping_result in data['shopping_results']:
    print(shopping_result['position']) + " - " + shopping_result['title'])

this script prints all the shopping results order by review order.

Google Search By Location

With SerpApi, we can build Google search from anywhere in the world. This code is looking for the best coffee shop per city.

from serpapi import GoogleSearch
for city in ["new york", "paris", "berlin"]:
  location = GoogleSearch({}).get_location(city, 1)[0]["canonical_name"]
  search = GoogleSearch({
      "q": "best coffee shop",   # search search
      "location": location,
      "num": 1,
      "start": 0
  })
  data = search.get_dict()
  top_result = data["organic_results"][0]["title"]

Batch Asynchronous Searches

We do offer two ways to boost your searches thanks to async parameter.

  • Blocking - async=false - it's more compute intensive because the search would need to hold many connections. (default)
  • Non-blocking - async=true - it's way to go for large amount of query submitted by batch (recommended)
# Operating system
import os

# regular expression library
import re

# safe queue (named Queue in python2)
from queue import Queue

# Time utility
import time

# SerpApi search
from serpapi import GoogleSearch

# store searches
search_queue = Queue()

# SerpApi search
search = GoogleSearch({
    "location": "Austin,Texas",
    "async": True,
    "api_key": os.getenv("API_KEY")
})

# loop through a list of companies
for company in ['amd', 'nvidia', 'intel']:
    print("execute async search: q = " + company)
    search.params_dict["q"] = company
    result = search.get_dict()
    if "error" in result:
        print("oops error: ", result["error"])
        continue
    print("add search to the queue where id: ", result['search_metadata'])
    # add search to the search_queue
    search_queue.put(result)

print("wait until all search statuses are cached or success")

# Create regular search
while not search_queue.empty():
    result = search_queue.get()
    search_id = result['search_metadata']['id']

    # retrieve search from the archive - blocker
    print(search_id + ": get search from archive")
    search_archived = search.get_search_archive(search_id)
    print(search_id + ": status = " +
          search_archived['search_metadata']['status'])

    # check status
    if re.search('Cached|Success',
                 search_archived['search_metadata']['status']):
        print(search_id + ": search done with q = " +
              search_archived['search_parameters']['q'])
    else:
        # requeue search_queue
        print(search_id + ": requeue search")
        search_queue.put(result)

        # wait 1s
        time.sleep(1)

print('all searches completed')

This code shows how to run searches asynchronously. The search parameters must have {async: True}. This indicates that the client shouldn't wait for the search to be completed. The current thread that executes the search is now non-blocking which allows to execute thousand of searches in seconds. The SerpApi backend will do the processing work. The actual search result is defer to a later call from the search archive using get_search_archive(search_id). In this example the non-blocking searches are persisted in a queue: search_queue. A loop through the search_queue allows to fetch individual search result. This process can be easily multithreaded to allow a large number of concurrent search requests. To keep thing simple, this example does only explore search result one at a time (single threaded).

See example.

Python object as a result

The search results can be automatically wrapped in dynamically generated Python object. This solution offers a more dynamic solution fully Oriented Object Programming approach over the regular Dictionary / JSON data structure.

from serpapi import GoogleSearch
search = GoogleSearch({"q": "Coffee", "location": "Austin,Texas"})
r = search.get_object()
assert type(r.organic_results), list
assert r.organic_results[0].title
assert r.search_metadata.id
assert r.search_metadata.google_url
assert r.search_parameters.q, "Coffee"
assert r.search_parameters.engine, "google"

Pagination using iterator

Let's collect links accross multiple search result pages.

# to get 2 pages
start = 0
end = 40
page_size = 10

# basic search parameters
parameter = {
  "q": "coca cola",
  "tbm": "nws",
  "api_key": os.getenv("API_KEY"),
  # optional pagination parameter
  #  the pagination method can take argument directly
  "start": start,
  "end": end,
  "num": page_size
}

# as proof of concept 
# urls collects
urls = []

# initialize a search
search = GoogleSearch(parameter)

# create a python generator using parameter
pages = search.pagination()
# or set custom parameter
pages = search.pagination(start, end, page_size)

# fetch one search result per iteration 
# using a basic python for loop 
# which invokes python iterator under the hood.
for page in pages:
  print(f"Current page: {page['serpapi_pagination']['current']}")
  for news_result in page["news_results"]:
    print(f"Title: {news_result['title']}\nLink: {news_result['link']}\n")
    urls.append(news_result['link'])
  
# check if the total number pages is as expected
# note: the exact number if variable depending on the search engine backend
if len(urls) == (end - start):
  print("all search results count match!")
if len(urls) == len(set(urls)):
  print("all search results are unique!")

Examples to fetch links with pagination: test file, online IDE

Error management

SerpAPI keeps error mangement very basic.

  • backend service error or search fail
  • client error

If it's a backend error, a simple message error is returned as string in the server response.

from serpapi import GoogleSearch
search = GoogleSearch({"q": "Coffee", "location": "Austin,Texas", "api_key": "<secret_key>"})
data = search.get_json()
assert data["error"] == None

In some case, there is more details availabel in the data object.

If it's client error, then a SerpApiClientException is raised.

Change log

2021-12-22 @ 2.4.1

  • add more search engine
    • youtube
    • walmart
    • apple_app_store
    • naver
  • raise SerpApiClientException instead of raw string in order to follow Python guideline 3.5+
  • add more unit error tests for serp_api_client

2021-07-26 @ 2.4.0

  • add page size support using num parameter
  • add youtube search engine

2021-06-05 @ 2.3.0

  • add pagination support

2021-04-28 @ 2.2.0

  • add get_response method to provide raw requests.Response object

2021-04-04 @ 2.1.0

  • Add home depot search engine
  • get_object() returns dynamic Python object

2020-10-26 @ 2.0.0

  • Reduce class name to Search
  • Add get_raw_json

2020-06-30 @ 1.8.3

  • simplify import
  • improve package for python 3.5+
  • add support for python 3.5 and 3.6

2020-03-25 @ 1.8

  • add support for Yandex, Yahoo, Ebay
  • clean-up test

2019-11-10 @ 1.7.1

  • increase engine parameter priority over engine value set in the class

2019-09-12 @ 1.7

  • Change namespace "from lib." instead: "from serpapi import GoogleSearch"
  • Support for Bing and Baidu

2019-06-25 @ 1.6

  • New search engine supported: Baidu and Bing

Conclusion

SerpApi supports all the major search engines. Google has the more advance support with all the major services available: Images, News, Shopping and more.. To enable a type of search, the field tbm (to be matched) must be set to:

  • isch: Google Images API.
  • nws: Google News API.
  • shop: Google Shopping API.
  • any other Google service should work out of the box.
  • (no tbm parameter): regular Google search.

The field tbs allows to customize the search even more.

The full documentation is available here.

Owner
SerpApi
API to get search engine results with ease.
SerpApi
A modular Telegram Python bot running on python3 with a sqlalchemy, redislab, mongo database, telethon, and pyrogram.

Zeldris Robot A modular Telegram Python bot running on python3 with a sqlalchemy, redislab, mongo database, telethon, and pyrogram. How to set up/depl

IDNCoderX 42 Dec 21, 2022
Pixiv 爬虫,使用 Python 实现。支持批量下载、上传到图床。

用 Python 实现的 Pixiv 爬虫,支持批量下载和上传。 随机图片 API: https://loliapi.ml/ Deploy Github Action 集成部署 建议使用本方法部署,相较于本地部署,无需搭建环境,全程在线上完成。并且使用国外服务器下载、上传,网络更加通畅。 Fork

18 Feb 26, 2022
Webb-Tracker-Bot - This is a discord bot that displays current progress of the James Webb Space Telescope.

Webb-Tracker-Bot - This is a discord bot that displays current progress of the James Webb Space Telescope.

Copperbotte 1 Jan 05, 2022
Python SDK for the Buycoins API.

This library provides easy access to the Buycoins API using the Python programming language. It provides all the feature of the API so that you don't need to interact with the API directly. This libr

Musa Rasheed 48 May 04, 2022
Instrument asyncio Python for distributed tracing with AWS X-Ray.

xraysink (aka xray-asyncio) Extra AWS X-Ray instrumentation to use distributed tracing with asyncio Python libraries that are not (yet) supported by t

Gary Donovan 12 Nov 10, 2022
Simple PoC script that allows you to exploit telegram's "send with timer" feature by saving any media sent with this functionality.

Simple PoC script that allows you to exploit telegram's "send with timer" feature by saving any media sent with this functionality.

Matteo 52 Nov 29, 2022
A really easy way to display your spotify listening status on spotify.

Spotify playing README A really easy way to display your spotify listening status on READMEs and Websites too! Demo Here's the embed from the site. Cu

Sunrit Jana 21 Nov 06, 2022
Telegram Bot to store Posts and Documents and it can Access by Special Links.

Telegram Bot to store Posts and Documents and it can Access by Special Links. I Guess This Will Be Usefull For Many People..... 😇 . Features Fully cu

REX BOTZ 1 Dec 23, 2021
A Flask & Twilio Secret Santa app.

🎄 ✨ Secret Santa Twilio ✨ 📱 A contactless Secret Santa game built with Python, Flask and Twilio! Prerequisites 📝 A Twilio account. Sign up here ngr

Sangeeta Jadoonanan 5 Dec 23, 2021
Get random jokes bapack2 on telegram

Jokes Bapack2 Telegram Bot Get random jokes bapack2 from jokes-bapack2-api on telegram bot Screenshot Requirements python pip pipenv python-telegram-b

Miftah Afina 2 Nov 17, 2021
Discord Mafia Game Bot using nextcord

Mafia-Bot Discord Mafia Game Bot using nextcord Features Mafia Game Game Replays Installation Run the following command to install required modules: p

Nian 6 Nov 19, 2022
An unofficial python wrapper for the comdirect API for private consumers.

An unofficial python wrapper for the comdirect API for private consumers.

Alexander Knittel 18 Nov 30, 2022
The scope of this project will be to build a data ware house on Google Cloud Platform that will help answer common business questions as well as powering dashboards

The scope of this project will be to build a data ware house on Google Cloud Platform that will help answer common business questions as well as powering dashboards.

Shweta_kumawat 2 Jan 20, 2022
Python client for Toyota North America service API

toyota-na Python client for Toyota North America service API Install pip install toyota-na[qt] [qt] is required for generating authorization code. Us

Gavin Ni 18 Sep 06, 2022
This repo contains a simple library for work with Eitaa messenger's api

Eitaa PyKit This repo contains a simple library for work with Eitaa messenger's api PyPI Page : https://pypi.org/project/Eitaa-PyKit Install via pip p

Bistcuite 20 Sep 16, 2022
A simple healthcheck wrapper to monitor Kafka.

kafka-healthcheck A simple healthcheck wrapper to monitor Kafka. Kafka Healthcheck is a simple server that provides a singular API endpoint to determi

Rodrigo Nicolas Garcia 3 Oct 17, 2022
GitHub Activity Generator - A script that helps you instantly generate a beautiful GitHub Contributions Graph for the last year.

GitHub Activity Generator A script that helps you instantly generate a beautiful GitHub Contributions Graph for the last year. Before 😐 😶 😒 After ?

1 Dec 30, 2021
Tools untuk krek akun igeh :v

Instalasi pkg update && pkg upgrade -y pkg install python git -y rm -rf InstaCrack git clone https://github.com/AngCyber/InstaCrack pip install reques

Moch Aang Ardiansyah-XD 12 Apr 05, 2022
Telegram vc userbot

Telegram Vc Userbot Available Commands /ping :- To check whether userbot is up or not /joinvc :- To join vc /leavevc :- To leave vc /join_group :- To

NandyDark 7 Nov 18, 2022
wyscoutapi is an extremely basic API client for the Wyscout API (v2 & v3) for Python

wyscoutapi wyscoutapi is an extremely basic API client for the Wyscout API (v2 & v3). Usage Install with pip install wyscoutapi. To connect to the Wys

Ben Torvaney 11 Nov 22, 2022