DaReCzech is a dataset for text relevance ranking in Czech

Overview

DaReCzech Dataset

DaReCzech is a dataset for text relevance ranking in Czech. The dataset consists of more than 1.6M annotated query-documents pairs, which makes it one of the largest available datasets for this task.

The dataset was introduced in paper Siamese BERT-based Model for Web Search Relevance RankingEvaluated on a New Czech Dataset which has been accepted at the IAAI 2022 (Innovative Application Award).

Obtaining the Annotated Data

Please, first read a disclaimer that contains the terms of use. If you comply with them, send an email to [email protected] and the link to the dataset will be sent to you.

Overview

DaReCzech is divided into four parts:

  • Train-big (more than 1.4M records) – intended for training of a (neural) text relevance model
  • Train-small (97k records) – intended for GBRT training (with a text relevance feature trained on Train-big)
  • Dev (41k records)
  • Test (64k records)

Each set is distributed as a .tsv file with 6 columns:

  • ID – unique record ID
  • query – user query
  • url – URL of annotated document
  • doc – representation of the document under the URL, each document is represented using its title, URL and Body Text Extract (BTE) that was obtained using the internal module of our search engine
  • title: document title
  • label – the annotated relevance of the document to the query. There are 5 relevance labels ranging from 0 (the document is not useful for given query) to 1 (document is for given query useful)

The files are UTF-8 encoded. The values never contain a tab and are not quoted nor escaped – to load the dataset in pandas, use

import csv
import pandas as pd
pd.read_csv(path, sep='\t', quoting=csv.QUOTE_NONE)

Baselines

We provide code to train two BERT-based baseline models: a query-doc model (train_querydoc_model.py) and a siamese model (train_siamese_model.py).

Before running the scripts, install requirements that are listed in requirements.txt. The scripts were tested with Python 3.6.

pip install -r requirements.txt

Model Training

To train a query-doc model with default settings, run:

python train_querydoc_model.py train_big.tsv dev.tsv outputs

To train a siamese model without a teacher, run:

python train_siamese_model.py train_big.tsv dev.tsv outputs

To train a siamese model with a trained query-doc teacher, run:

python train_siamese_model.py train_big.tsv dev.tsv outputs --teacher path_to_query_doc_checkpoint

Note that example scripts run training with our (unsupervisedly) pretrained Small-E-Czech model.

Model Evaluation

To evaluate the trained query-doc model on test data, run:

python evaluate_model.py model_path test.tsv --is_querydoc

To evaluate the trained siamese model on test data, run:

python evaluate_model.py model_path test.tsv --is_siamese

Acknowledgements

If you use the dataset in your work, please cite the original paper:

@article{kocian2021siamese,
  title={Siamese BERT-based Model for Web Search Relevance RankingEvaluated on a New Czech Dataset},
  author={Kocián, Matěj and Náplava, Jakub and Štancl, Daniel and Kadlec, Vladimír},
  journal={arXiv preprint arXiv:2112.01810},
  year={2021}
}
Owner
Seznam.cz a.s.
Seznam.cz a.s.
Answering Open-Domain Questions of Varying Reasoning Steps from Text

This repository contains the authors' implementation of the Iterative Retriever, Reader, and Reranker (IRRR) model in the EMNLP 2021 paper "Answering Open-Domain Questions of Varying Reasoning Steps

26 Dec 22, 2022
Code for the paper "JANUS: Parallel Tempered Genetic Algorithm Guided by Deep Neural Networks for Inverse Molecular Design"

JANUS: Parallel Tempered Genetic Algorithm Guided by Deep Neural Networks for Inverse Molecular Design This repository contains code for the paper: JA

Aspuru-Guzik group repo 55 Nov 29, 2022
A hue shift helper for OBS

obs-hue-shift A hue shift helper for OBS This is a repo based on the really nice script Hegemege made. The original script can be found https://gist.g

Alexis Tyler 1 Jan 10, 2022
Code and data for ACL2021 paper Cross-Lingual Abstractive Summarization with Limited Parallel Resources.

Multi-Task Framework for Cross-Lingual Abstractive Summarization (MCLAS) The code for ACL2021 paper Cross-Lingual Abstractive Summarization with Limit

Yu Bai 43 Nov 07, 2022
A Kaggle competition: discriminate gender based on handwriting

Gender discrimination based on handwriting See http://fastml.com/gender-discrimination/ for description. prep_data.py - a first step chunk_by_authors.

Zygmunt Zając 22 Jul 20, 2022
MassiveSumm: a very large-scale, very multilingual, news summarisation dataset

MassiveSumm: a very large-scale, very multilingual, news summarisation dataset This repository contains links to data and code to fetch and reproduce

Daniel Varab 19 Dec 16, 2022
Python port of R's Comprehensive Dynamic Time Warp algorithm package

Welcome to the dtw-python package Comprehensive implementation of Dynamic Time Warping algorithms. DTW is a family of algorithms which compute the loc

Dynamic Time Warping algorithms 154 Dec 26, 2022
ThunderGBM: Fast GBDTs and Random Forests on GPUs

Documentations | Installation | Parameters | Python (scikit-learn) interface What's new? ThunderGBM won 2019 Best Paper Award from IEEE Transactions o

Xtra Computing Group 647 Jan 04, 2023
This repository contains several image-to-image translation models, whcih were tested for RGB to NIR image generation. The models are Pix2Pix, Pix2PixHD, CycleGAN and PointWise.

RGB2NIR_Experimental This repository contains several image-to-image translation models, whcih were tested for RGB to NIR image generation. The models

5 Jan 04, 2023
Code for our ALiBi method for transformer language models.

Train Short, Test Long: Attention with Linear Biases Enables Input Length Extrapolation This repository contains the code and models for our paper Tra

Ofir Press 211 Dec 31, 2022
Tree LSTM implementation in PyTorch

Tree-Structured Long Short-Term Memory Networks This is a PyTorch implementation of Tree-LSTM as described in the paper Improved Semantic Representati

Riddhiman Dasgupta 529 Dec 10, 2022
Python版OpenCVのTracking APIのサンプルです。DaSiamRPNアルゴリズムまで対応しています。

OpenCV-Object-Tracker-Sample Python版OpenCVのTracking APIのサンプルです。   Requirement opencv-contrib-python 4.5.3.56 or later Algorithm 2021/07/16時点でOpenCVには以

KazuhitoTakahashi 36 Jan 01, 2023
mlpack: a scalable C++ machine learning library --

a fast, flexible machine learning library Home | Documentation | Doxygen | Community | Help | IRC Chat Download: current stable version (3.4.2) mlpack

mlpack 4.2k Jan 09, 2023
Official PyTorch implementation of MAAD: A Model and Dataset for Attended Awareness

MAAD: A Model for Attended Awareness in Driving Install // Datasets // Training // Experiments // Analysis // License Official PyTorch implementation

7 Oct 16, 2022
Non-stationary GP package written from scratch in PyTorch

NSGP-Torch Examples gpytorch model with skgpytorch # Import packages import torch from regdata import NonStat2D from gpytorch.kernels import RBFKernel

Zeel B Patel 1 Mar 06, 2022
PyVideoAI: Action Recognition Framework

This reposity contains official implementation of: Capturing Temporal Information in a Single Frame: Channel Sampling Strategies for Action Recognitio

Kiyoon Kim 22 Dec 29, 2022
HybVIO visual-inertial odometry and SLAM system

HybVIO A visual-inertial odometry system with an optional SLAM module. This is a research-oriented codebase, which has been published for the purposes

Spectacular AI 320 Jan 03, 2023
A new framework, collaborative cascade prediction based on graph neural networks (CCasGNN) to jointly utilize the structural characteristics, sequence features, and user profiles.

CCasGNN A new framework, collaborative cascade prediction based on graph neural networks (CCasGNN) to jointly utilize the structural characteristics,

5 Apr 29, 2022
This git repo contains the implementation of my ML project on Heart Disease Prediction

Introduction This git repo contains the implementation of my ML project on Heart Disease Prediction. This is a real-world machine learning model/proje

Aryan Dutta 1 Feb 02, 2022
Wandb-predictions - WANDB Predictions With Python

WANDB API CI/CD Below we capture the CI/CD scenarios that we would expect with o

Anish Shah 6 Oct 07, 2022