Source code for the ACL-IJCNLP 2021 paper entitled "T-DNA: Taming Pre-trained Language Models with N-gram Representations for Low-Resource Domain Adaptation" by Shizhe Diao et al.

Related tags

Deep LearningT-DNA
Overview

T-DNA

Source code for the ACL-IJCNLP 2021 paper entitled Taming Pre-trained Language Models with N-gram Representations for Low-Resource Domain Adaptation.

Our implementation is built on the source code from huggingface transformers.

Model

We aim to adapt a generic pretrained model with a relatively small amount of domain-specific data. We demonstrate that by explicitly incorporating the multi-granularity information of unseen and domain-specific words via the adaptation of (word based) n-grams, the performance of a generic pretrained model can be greatly improved. Specifically, we introduce a Transformer-based Domain-aware N-gram Adaptor, T-DNA, to effectively learn and incorporate the semantic representation of different combinations of words in the new domain. T-DNA is able to achieve significant improvements compared to existing methods on most tasks using limited data with lower computational costs.

The overall architechture of T-DNA is shown in the figure below. image info

Requirements

Our code works with the following environment.

  • python=3.7.9
  • pytorch=1.4.0

To install the necessary packages for the project, please run: pip install -r requirements.txt.

Quick Start (For reproducing results)

  1. To do RoBERTa+T-DNA+FT, please refer to auto_FT.sh and you can simply run CUDA_VISIBLE_DEVICES=<GPU_ID> bash auto_FT.sh and get the expected results:
09/08/2021 19:56:58 - INFO - __main__ -   ***** Test results ag *****
09/08/2021 19:56:58 - INFO - __main__ -     eval_loss = 0.4393280267715454
09/08/2021 19:56:58 - INFO - __main__ -     eval_acc_and_f1 = {'acc': 0.8889473684210526, 'f1': 0.8889374532466023, 'acc_and_f1': 0.8889424108338275}
  1. To do RoBERTa+T-DNA+TAPT, please refer to auto_TAPT.sh and you can simply run CUDA_VISIBLE_DEVICES=<GPU_ID> bash auto_TAPT.sh and get the expected results:
09/08/2021 19:47:03 - INFO - __main__ -   ***** Test results ag *****
09/08/2021 19:47:03 - INFO - __main__ -     eval_loss = 0.48006332549609637
09/08/2021 19:47:03 - INFO - __main__ -     eval_acc_and_f1 = {'acc': 0.8943421052631579, 'f1': 0.8939718422143115, 'acc_and_f1': 0.8941569737387347}
  1. Important arguments:
    • task_name: ag, amazon, citation_intent, chemprot, hyperpartisan_news, imdb, rct-20k, sciie
    • data_dir: path of processed data
    • output_dir: path of saved results

Datasets

Following Gururangan et al. (2020), we conduct our experiments on eight classification tasks from four domains including biomedical sciences, computer scie nce, news and reviews. They are:

  • ChemProt: a manually annotated chemical–protein interaction dataset extracted from 5,031 abstracts for relation classification;
  • RCT: contains approximately 200,000 abstracts from public medicine with the role of each sentence clearly identified;
  • CitationIntent: contains around 2,000 citations annotated for their function;
  • SciERC: consists of 500 scientific abstracts annotated for relation classification;
  • HyperPartisan: which contains 645 articles from Hyperpartisan news with either extreme left-wing or right-wing stand-point used for partisanship classification;
  • AGNews: consists of 127,600 categorized articles from more than 2000 news source for topic classification;
  • Amazon: consists of 145,251 reviews on Women’s and Men’s Clothing & Accessories, each representing users’ implicit feedback on items with a binary label signifying whether the majority of customers found the review helpful;
  • IMDB: 50,000 balanced positive and negative reviews from the Internet Movie Database for sentiment classification

The datasets can be downloaded from the code associated with the Don't Stop Pretraining ACL 2020 paper. Please create a folder ./data in the root directory and put the downloaded datasets into it. After downloading, please convert them to *.tsv files referring to the script convert_dont_stop_corpus.py. Note that to create a low-resource setting, we constrain the size of all datasets into thousand-level. To do so, we randomly select a subset for RCT, AG, Amazon, IMDB with the ratio 1%, 1%, 1%, 10%, respectively.

To extract n-grams for datasets, please run pmi_ngram.py with the following parameters:

  • --dataset: the path of training data file
  • --output_dir: the path of output directory

Use with your own data

In this repo, we conducted experiments on eight classification tasks as described in the paper. In addition, it supports any classification task with just a little adjustment on your dataset. Here are the instructions to conduct experiments with your own data.

Firstly, please adjust your data format as following and put your data into the corresponding path.

Task adaptive pre-training:

Input dataset (./data/):

  • train: text \t label per line
  • dev: text \t label per line

Output: it will save the trained models to results folder automatically, and print out loss.

Fine-tuning dataset:

Input dataset (./data/tapt_data/):

  • train: text \t label per line
  • dev: text \t label per line
  • test: text \t label per line

Then, please modify the configuration file at ./TDNA/config.py

  1. define the desired evaluation metric in glue_compute_metrics(), e.g.,
elif task_name == "ag":
   return {"acc_and_f1": acc_and_f1(preds, labels)}
  1. create a new processor specifying the labels, e.g.,
class agProcessor(generalProcessor):
    def get_labels(self):
        return ['1', '2', '3', '4']
  1. specify the number of labels, e.g.,
glue_tasks_num_labels = {
    "citation_intent": 6,
    "ag": 4,
    "amazon": 2,
    "chemprot": 13,
    "hyperpartisan_news": 2,
    "imdb": 2,
    "rct-20k": 5,
    "sciie": 7,
    "SST2": 2
}
  1. include the new processor into glue_processors, e.g.,
glue_processors = {
    "citation_intent": citation_intentProcessor,
    "ag": agProcessor,
    "amazon": amazonProcessor,
    "chemprot": chemprotProcessor,
    "hyperpartisan_news": hyperpartisan_newsProcessor,
    "imdb": imdbProcessor,
    "rct-20k": rct_20kProcessor,
    "sciie": sciieProcessor,
    "SST2": SST2Processor
}
  1. specify the output mode in glue_output_modes, e.g.,
glue_output_modes = {
    "citation_intent": "classification",
    "ag": "classification",
    "amazon": "classification",
    "chemprot": "classification",
    "hyperpartisan_news": "classification",
    "imdb": "classification",
    "rct-20k": "classification",
    "sciie": "classification",
    "SST2": "classification"
}

Run

For FT,

python ./examples/run_classification.py --model_name_or_path roberta-base \
--task_name <task_name> --max_seq_length 256 --per_device_train_batch_size 16 \
--learning_rate 4e-5 --num_train_epochs 3.0 --output_dir ./results/<task_name>_FT/ \
--data_dir ./data/<task_name>/ --Ngram_path ./ngram/pmi_<task_name>_ngram.txt \
--fasttext_model_path ./ngram/<task_name>.npy --overwrite_output_dir

For TAPT + FT,

python ./examples/run_language_modeling.py \
--output_dir=./models/<task_name>_TAPT/ --model_type=roberta  --overwrite_output_dir \
--model_name_or_path=roberta-base --train_data_file=./data/tapt_data/<task_name>/train.tsv \
--eval_data_file=./data/tapt_data/<task_name>/dev.tsv --mlm --line_by_line \
--Ngram_path ./ngram/pmi_<task_name>_ngram.txt --num_train_epochs 10.0 \
--fasttext_model_path ./ngram/<task_name>.npy --learning_rate 4e-5

python ./examples/run_classification.py \
--model_name_or_path ./models/<task_name>_TAPT \
--task_name <task_name> --max_seq_length 256 --per_device_train_batch_size 16 \
--learning_rate 2e-5 --num_train_epochs 5.0 --output_dir ./results/<task_name>_TAPT_FT/ \
--data_dir ./data/<task_name>/ --Ngram_path ./ngram/pmi_<task_name>_ngram.txt --overwrite_output_dir --save_steps 5000

Output:

The run_classification.py program will save the trained models to results folder automatically, and print out loss, accuracy, f1 score. In addition, you can get the prediction results in args.output_dir/test_pred_{task_name}.txt. Take test_pred_ag.txt as an example:

input   label   pred
Unions representing workers at Turner   Newall say they are 'disappointed' after talks with stricken parent firm Federal Mogul. 3       3
SPACE.com - TORONTO, Canada -- A second\team of rocketeers competing for the  #36;10 million Ansari X Prize, a contest for\privately funded suborbital space flight, has officially announced the first\launch date for its manned rocket.      4       4
...

Contact information

For help or issues using T-DNA, please submit a GitHub issue.

For personal communication related to T-DNA, please contact Shizhe Diao ([email protected]).

Citation

If you use or extend our work, please cite the following paper:

@inproceedings{DXSJSZ2021,
    title = "Taming Pre-trained Language Models with N-gram Representations for Low-Resource Domain Adaptation",
    author = "Diao, Shizhe  and
      Xu, Ruijia  and
      Su, Hongjin  and
      Jiang, Yilei  and
      Song, Yan  and
      Zhang, Tong",
    booktitle = "Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)",
    month = aug,
    year = "2021",
    address = "Online",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2021.acl-long.259",
    doi = "10.18653/v1/2021.acl-long.259",
    pages = "3336--3349",
}
Owner
shizhediao
shizhediao
Prototypical Networks for Few shot Learning in PyTorch

Prototypical Networks for Few shot Learning in PyTorch Simple alternative Implementation of Prototypical Networks for Few Shot Learning (paper, code)

Orobix 835 Jan 08, 2023
Credit fraud detection in Python using a Jupyter Notebook

Credit-Fraud-Detection - Credit fraud detection in Python using a Jupyter Notebook , using three classification models (Random Forest, Gaussian Naive Bayes, Logistic Regression) from the sklearn libr

Ali Akram 4 Dec 28, 2021
Deep-Learning-Image-Captioning - Implementing convolutional and recurrent neural networks in Keras to generate sentence descriptions of images

Deep Learning - Image Captioning with Convolutional and Recurrent Neural Nets ========================================================================

23 Apr 06, 2022
ICCV2021, Tokens-to-Token ViT: Training Vision Transformers from Scratch on ImageNet

Tokens-to-Token ViT: Training Vision Transformers from Scratch on ImageNet, ICCV 2021 Update: 2021/03/11: update our new results. Now our T2T-ViT-14 w

YITUTech 1k Dec 31, 2022
Official PyTorch implementation of N-ImageNet: Towards Robust, Fine-Grained Object Recognition with Event Cameras (ICCV 2021)

N-ImageNet: Towards Robust, Fine-Grained Object Recognition with Event Cameras Official PyTorch implementation of N-ImageNet: Towards Robust, Fine-Gra

32 Dec 26, 2022
Full Stack Deep Learning Labs

Full Stack Deep Learning Labs Welcome! Project developed during lab sessions of the Full Stack Deep Learning Bootcamp. We will build a handwriting rec

Full Stack Deep Learning 1.2k Dec 31, 2022
Data Augmentation Using Keras and Python

Data-Augmentation-Using-Keras-and-Python Data augmentation is the process of increasing the number of training dataset. Keras library offers a simple

Happy N. Monday 3 Feb 15, 2022
Python library for science observations from the James Webb Space Telescope

JWST Calibration Pipeline JWST requires Python 3.7 or above and a C compiler for dependencies. Linux and MacOS platforms are tested and supported. Win

Space Telescope Science Institute 386 Dec 30, 2022
Official implementation of the paper WAV2CLIP: LEARNING ROBUST AUDIO REPRESENTATIONS FROM CLIP

Wav2CLIP 🚧 WIP 🚧 Official implementation of the paper WAV2CLIP: LEARNING ROBUST AUDIO REPRESENTATIONS FROM CLIP 📄 🔗 Ho-Hsiang Wu, Prem Seetharaman

Descript 240 Dec 13, 2022
Unifying Global-Local Representations in Salient Object Detection with Transformer

GLSTR (Global-Local Saliency Transformer) This is the official implementation of paper "Unifying Global-Local Representations in Salient Object Detect

11 Aug 24, 2022
This is an (re-)implementation of DeepLab-ResNet in TensorFlow for semantic image segmentation on the PASCAL VOC dataset.

DeepLab-ResNet-TensorFlow This is an (re-)implementation of DeepLab-ResNet in TensorFlow for semantic image segmentation on the PASCAL VOC dataset. Up

19 Jan 16, 2022
Unofficial PyTorch implementation of Attention Free Transformer (AFT) layers by Apple Inc.

aft-pytorch Unofficial PyTorch implementation of Attention Free Transformer's layers by Zhai, et al. [abs, pdf] from Apple Inc. Installation You can i

Rishabh Anand 184 Dec 12, 2022
Moving Object Segmentation in 3D LiDAR Data: A Learning-based Approach Exploiting Sequential Data

LiDAR-MOS: Moving Object Segmentation in 3D LiDAR Data This repo contains the code for our paper: Moving Object Segmentation in 3D LiDAR Data: A Learn

Photogrammetry & Robotics Bonn 394 Dec 29, 2022
TLXZoo - Pre-trained models based on TensorLayerX

Pre-trained models based on TensorLayerX. TensorLayerX is a multi-backend AI fra

TensorLayer Community 13 Dec 07, 2022
A Comparative Framework for Multimodal Recommender Systems

Cornac Cornac is a comparative framework for multimodal recommender systems. It focuses on making it convenient to work with models leveraging auxilia

Preferred.AI 671 Jan 03, 2023
Python implementation of O-OFDMNet, a deep learning-based optical OFDM system,

O-OFDMNet This includes Python implementation of O-OFDMNet, a deep learning-based optical OFDM system, which uses neural networks for signal processin

Thien Luong 4 Sep 09, 2022
Pytorch code for semantic segmentation using ERFNet

ERFNet (PyTorch version) This code is a toolbox that uses PyTorch for training and evaluating the ERFNet architecture for semantic segmentation. For t

Edu 394 Jan 01, 2023
Authors implementation of LieTransformer: Equivariant Self-Attention for Lie Groups

LieTransformer This repository contains the implementation of the LieTransformer used for experiments in the paper LieTransformer: Equivariant self-at

35 Oct 18, 2022
Angora is a mutation-based fuzzer. The main goal of Angora is to increase branch coverage by solving path constraints without symbolic execution.

Angora Angora is a mutation-based coverage guided fuzzer. The main goal of Angora is to increase branch coverage by solving path constraints without s

833 Jan 07, 2023
Generative Modelling of BRDF Textures from Flash Images [SIGGRAPH Asia, 2021]

Neural Material Official code repository for the paper: Generative Modelling of BRDF Textures from Flash Images [SIGGRAPH Asia, 2021] Henzler, Deschai

Philipp Henzler 80 Dec 20, 2022