Block fingerprinting for the beacon chain, for client identification & client diversity metrics

Overview

blockprint

This is a repository for discussion and development of tools for Ethereum block fingerprinting.

The primary aim is to measure beacon chain client diversity using on-chain data, as described in this tweet:

https://twitter.com/sproulM_/status/1440512518242197516

The latest estimate using the improved k-NN classifier for slots 2048001 to 2164916 is:

Getting Started

The raw data for block fingerprinting needs to be sourced from Lighthouse's block_rewards API.

This is a new API that is currently only available on the block-rewards-api branch, i.e. this pull request: https://github.com/sigp/lighthouse/pull/2628

Lighthouse can be built from source by following the instructions here.

VirtualEnv

All Python commands should be run from a virtualenv with the dependencies from requirements.txt installed.

python3 -m venv venv
source venv/bin/activate
pip install -r requirements.txt

k-NN Classifier

The best classifier implemented so far is a k-nearest neighbours classifier in knn_classifier.py.

It requires a directory of structered training data to run, and can be used either via a small API server, or in batch mode.

You can download a large (886M) training data set here.

To run in batch mode against a directory of JSON batches (individual files downloaded from LH), use this command:

./knn_classifier.py training_data_proc data_to_classify

Expected output is:

classifier score: 0.9886800869904645
classifying rewards from file slot_2048001_to_2050048.json
total blocks processed: 2032
Lighthouse,0.2072
Nimbus or Prysm,0.002
Nimbus or Teku,0.0025
Prysm,0.6339
Prysm or Teku,0.0241
Teku,0.1304

Training the Classifier

The classifier is trained from a directory of reward batches. You can fetch batches with the load_blocks.py script by providing a start slot, end slot and output directory:

./load_blocks.py 2048001 2048032 testdata

The directory testdata now contains 1 or more files of the form slot_X_to_Y.json downloaded from Lighthouse.

To train the classifier on this data, use the prepare_training_data.py script:

./prepare_training_data.py testdata testdata_proc

This will read files from testdata and write the graffiti-classified training data to testdata_proc, which is structured as directories of single block reward files for each client.

$ tree testdata_proc
testdata_proc
├── Lighthouse
│   ├── 0x03ae60212c73bc2d09dd3a7269f042782ab0c7a64e8202c316cbcaf62f42b942.json
│   └── 0x5e0872a64ea6165e87bc7e698795cb3928484e01ffdb49ebaa5b95e20bdb392c.json
├── Nimbus
│   └── 0x0a90585b2a2572305db37ef332cb3cbb768eba08ad1396f82b795876359fc8fb.json
├── Prysm
│   └── 0x0a16c9a66800bd65d997db19669439281764d541ca89c15a4a10fc1782d94b1c.json
└── Teku
    ├── 0x09d60a130334aa3b9b669bf588396a007e9192de002ce66f55e5a28309b9d0d3.json
    ├── 0x421a91ebdb650671e552ce3491928d8f78e04c7c9cb75e885df90e1593ca54d6.json
    └── 0x7fedb0da9699c93ce66966555c6719e1159ae7b3220c7053a08c8f50e2f3f56f.json

You can then use this directory as the first argument to ./knn_classifier.py.

Classifier API

With pre-processed training data installed in ./training_data_proc, you can host a classification API server like this:

gunicorn --reload api_server --timeout 1800

It will take a few minutes to start-up while it loads all of the training data into memory.

Initialising classifier, this could take a moment...
Start-up complete, classifier score is 0.9886800869904645

Once it has started up, you can make POST requests to the /classify endpoint containing a single JSON-encoded block reward. There is an example input file in examples.

curl -s -X POST -H "Content-Type: application/json" --data @examples/single_teku_block.json "http://localhost:8000/classify"

The response is of the following form:

{
  "block_root": "0x421a91ebdb650671e552ce3491928d8f78e04c7c9cb75e885df90e1593ca54d6",
  "best_guess_single": "Teku",
  "best_guess_multi": "Teku",
  "probability_map": {
    "Lighthouse": 0.0,
    "Nimbus": 0.0,
    "Prysm": 0.0,
    "Teku": 1.0
  }
}
  • best_guess_single is the single client that the classifier deemed most likely to have proposed this block.
  • best_guess_multi is a list of 1-2 client guesses. If the classifier is more than 95% sure of a single client then the multi guess will be the same as best_guess_single. Otherwise it will be a string of the form "Lighthouse or Teku" with 2 clients in lexicographic order. 3 client splits are never returned.
  • probability_map is a map from each known client label to the probability that the given block was proposed by that client.

TODO

  • Improve the classification algorithm using better stats or machine learning (done, k-NN).
  • Decide on data representations and APIs for presenting data to a frontend (done).
  • Implement a web backend for the above API (done).
  • Polish and improve all of the above.
Owner
Sigma Prime
Blockchain & Information Security Services
Sigma Prime
Implementation of the MDMC method to search for magnetic ground state using VASP

Implementation of MDMC method ( by Olga Vekilova ) to search for magnetic ground state using VASP

Utkarsh Singh 1 Nov 27, 2021
An execution framework for systematic strategies

WAGMI is an execution framework for systematic strategies. It is very much a work in progress, please don't expect it to work! Architecture The Django

Rich Atkinson 10 Mar 28, 2022
MIXLAB_NASA_TICKET mixlab 灵感来源于NASA的火星船票

MIXLAB_NASA_TICKET mixlab 灵感来源于NASA的火星船票,我们想要使用开源的代码来定制化这一设计。 其中photo_to_cartoon 是paddle的开源代码:https://github.com/minivision-ai/photo2cartoon-paddle 也借

tongji_cy 38 Feb 20, 2022
Lags valorant servers by rapidly picking up and throwing shorties.

Lags valorant servers by rapidly picking up and throwing shorties.

Eric Still 9 Dec 30, 2021
Find all solutions to SUBSET-SUM, including negative, positive, and repeating numbers

subsetsum The subsetsum Python module can enumerate all combinations within a list of integers which sums to a specific value. It works for both negat

Trevor Phillips 9 May 27, 2022
A MCPI hack with many features.

Morpheus 2.0 A MCPI hack with many features To Use: You will need to install the keyboard, pysimplegui, and MCPI python modules and you will need to e

11 Oct 11, 2022
Kivy program for identification & rotation sensing of objects on multi-touch tables.

ObjectViz ObjectViz is a multitouch object detection solution, enabling you to create physical markers out of any reliable multitouch solution. It's e

TangibleDisplay 8 Apr 04, 2022
Runtime fault injection platform by Daniele Rizzieri (2021)

GDBitflip [v1.04] Runtime fault injection platform by Daniele Rizzieri (2021) This platform executes N times a binary and during each execution it inj

Daniele Rizzieri 1 Dec 07, 2021
Age of Empires II recorded game parsing and summarization in Python 3.

mgz Age of Empires II recorded game parsing and summarization in Python 3. Supported Versions Age of Kings (.mgl) The Conquerors (.mgx) Userpatch 1.4

148 Dec 11, 2022
Graveyard is an attempt at open-source reimplementation of DraciDoupe.cz

Graveyard: Place for Dead (and Undead) Graveyard is an attempt at open-source reimplementation of DraciDoupe.cz (referred to as DDCZ in this text). De

DraciDoupe.cz 5 Mar 17, 2022
A python script that changes your desktop background based on current weather and time of the day.

Desktop background wallpaper, based on current weather and time A python script that changes your computer's desktop background based on current weath

Maj Gaberšček 1 Nov 16, 2021
Beancount: Double-Entry Accounting from Text Files.

beancount: Double-Entry Accounting from Text Files Contents Description Documentation Download & Installation Versions Filing Bugs Copyright and Licen

2.3k Dec 28, 2022
Library for mocking AsyncIOMotorClient built on top of mongomock.

mongomock-motor Best effort mock for AsyncIOMotorClient (Database, Collection, e.t.c) built on top of mongomock library. Example / Showcase from mongo

Michael Kryukov 43 Jan 04, 2023
Simple card retirement plugin for Anki

Anki Retirement Addon Allow users to suspend, tag, delete, or move cards that reach a specific retirement interval Supports Anki version 2.1.45 Licens

3 Dec 23, 2022
A reproduction repo for a Scheduling bug in AirFlow 2.2.3

A reproduction repo for a Scheduling bug in AirFlow 2.2.3

Ilya Strelnikov 1 Feb 09, 2022
全局指针统一处理嵌套与非嵌套NER

GlobalPointer 全局指针统一处理嵌套与非嵌套NER。 介绍 博客:https://kexue.fm/archives/8373 效果 人民日报NER 验证集F1 测试集F1 训练速度 预测速度 CRF 96.39% 95.46% 1x 1x GlobalPointer (w/o RoPE

苏剑林(Jianlin Su) 183 Jan 06, 2023
Statistics Calculator module for all types of Stats calculations.

Statistics-Calculator This Calculator user the formulas and methods to find the statistical values listed. Statistics Calculator module for all types

2 May 29, 2022
Have an idea for a Python package? Register the name on PyPI 💡

Register Package Names on PyPI Have an idea for a Python package? Thought of a great name? Register it on PyPI, before someone else does! A tool that

Alex Ioannides 1 Jul 15, 2022
freeCodeCamp Scientific Computing with Python Project for Certification.

Time_Calculator_freeCodeCamp freeCodeCamp Scientific Computing with Python Project for Certification. Write a function named add_time that takes in tw

Rajdeep Mondal 1 Dec 23, 2021
Check if Python package names are available on PyPI.

😻 isavailable Can I haz this Python package on PyPI? Check if Python package names are available on PyPI. Usage $ isavailable checks whether your des

Felipe S. S. Schneider 3 May 18, 2022