Run async workflows using pytest-fixtures-style dependency injection

Overview

asyncinject

PyPI Changelog License

Run async workflows using pytest-fixtures-style dependency injection

Installation

Install this library using pip:

$ pip install asyncinject

Usage

This library is inspired by pytest fixtures.

The idea is to simplify executing parallel asyncio operations by allowing them to be collected in a class, with the names of parameters to the class methods specifying which other methods should be executed first.

This then allows the library to create and execute a plan for executing various dependent methods in parallel.

Here's an example, using the httpx HTTP library.

from asyncinject import AsyncInjectAll
import httpx

async def get(url):
    async with httpx.AsyncClient() as client:
        return (await client.get(url)).text

class FetchThings(AsyncInjectAll):
    async def example(self):
        return await get("http://www.example.com/")

    async def simonwillison(self):
        return await get("https://simonwillison.net/search/?tag=empty")

    async def both(self, example, simonwillison):
        return example + "\n\n" + simonwillison


combined = await FetchThings().both()
print(combined)

If you run this in ipython (which supports top-level await) you will see output that combines HTML from both of those pages.

The HTTP requests to www.example.com and simonwillison.net will be performed in parallel.

The library will notice that both() takes two arguments which are the names of other async def methods on that class, and will construct an execution plan that executes those two methods in parallel, then passes their results to the both() method.

Parameters are passed through

Your dependent methods can require keyword arguments which are passed to the original method.

class FetchWithParams(AsyncInjectAll):
    async def get_param_1(self, param1):
        return await get(param1)

    async def get_param_2(self, param2):
        return await get(param2)

    async def both(self, get_param_1, get_param_2):
        return get_param_1 + "\n\n" + get_param_2


combined = await FetchWithParams().both(
    param1 = "http://www.example.com/",
    param2 = "https://simonwillison.net/search/?tag=empty"
)
print(combined)

Parameters with default values are ignored

You can opt a parameter out of the dependency injection mechanism by assigning it a default value:

class IgnoreDefaultParameters(AsyncInjectAll):
    async def go(self, calc1, x=5):
        return calc1 + x

    async def calc1(self):
        return 5

print(await IgnoreDefaultParameters().go())
# Prints 10

AsyncInject and @inject

The above example illustrates the AsyncInjectAll class, which assumes that every async def method on the class should be treated as a dependency injection method.

You can also specify individual methods using the AsyncInject base class an the @inject decorator:

from asyncinject import AsyncInject, inject

class FetchThings(AsyncInject):
    @inject
    async def example(self):
        return await get("http://www.example.com/")

    @inject
    async def simonwillison(self):
        return await get("https://simonwillison.net/search/?tag=empty")

    @inject
    async def both(self, example, simonwillison):
        return example + "\n\n" + simonwillison

The resolve() function

If you want to execute a set of methods in parallel without defining a third method that lists them as parameters, you can do so using the resolve() function. This will execute the specified methods (in parallel, where possible) and return a dictionary of the results.

from asyncinject import resolve

fetcher = FetchThings()
results = await resolve(fetcher, ["example", "simonwillison"])

results will now be:

{
    "example": "contents of http://www.example.com/",
    "simonwillison": "contents of https://simonwillison.net/search/?tag=empty"
}

Development

To contribute to this library, first checkout the code. Then create a new virtual environment:

cd asyncinject
python -m venv venv
source venv/bin/activate

Or if you are using pipenv:

pipenv shell

Now install the dependencies and test dependencies:

pip install -e '.[test]'

To run the tests:

pytest
Comments
  • Concurrency is not being optimized

    Concurrency is not being optimized

    It looks like concurrency / parallelism is not being maximized due to the grouping of dependencies into node groups. Here's a simple example:

    import asyncio
    from time import time
    from typing import Annotated
    
    async def a():
        await asyncio.sleep(1)
    
    async def b():
        await asyncio.sleep(2)
    
    async def c(a):
        await asyncio.sleep(1)
    
    async def d(b, c):
        pass
    
    async def main_asyncinjector():
        reg = Registry(a, b, c, d)
        start = time()
        await reg.resolve(d)
        print(time()-start)
    
    asyncio.run(main_asyncinjector())
    

    This should take 2 seconds to run (start a and b, once a finishes start c, b and c finish at the same time and you're done) but takes 3 seconds (start a and b, wait for both to finish then start c).

    This happens because graphlib.TopologicalSorter is not used online and instead it is being used to statically compute groups of dependencies.

    I don't think it would be too hard to address this, but I'm not sure how much you'd want to change to accommodate this. I work on a similar project (https://github.com/adriangb/di) and there I found it very useful to break out the concept of an "executor" out of the container/registry concept, which means that instead of a parallel option you'd have pluggable executors that could choose to use concurrency, limit concurrency, use threads instead, etc. FWIW here's what that looks like with this example:

    import asyncio
    from time import time
    from typing import Annotated
    
    from asyncinject import Registry
    from di.dependant import Marker, Dependant
    from di.container import Container
    from di.executors import ConcurrentAsyncExecutor
    
    
    async def a():
        await asyncio.sleep(1)
    
    async def b():
        await asyncio.sleep(2)
    
    async def c(a: Annotated[None, Marker(a)]):
        await asyncio.sleep(1)
    
    async def d(b: Annotated[None, Marker(b)], c: Annotated[None, Marker(c)]):
        pass
    
    async def main_asyncinjector():
        reg = Registry(a, b, c, d)
        start = time()
        await reg.resolve(d)
        print(time()-start)
    
    
    async def main_di():
        container = Container()
        solved = container.solve(Dependant(d), scopes=[None])
        executor = ConcurrentAsyncExecutor()
        async with container.enter_scope(None) as state:
            start = time()
            await container.execute_async(solved, executor, state=state)
            print(time()-start)
    
    asyncio.run(main_asyncinjector())  # 3 seconds
    asyncio.run(main_di())  # 2 seconds
    
    enhancement 
    opened by adriangb 5
  • Investigate a non-class-based version

    Investigate a non-class-based version

    I'm thinking about using this with Datasette plugins, which aren't well suited to the current class-based mechanism because plugins may want to register their own additional dependency injection functions.

    research 
    opened by simonw 4
  • Debug mechanism

    Debug mechanism

    Add a mechanism which shows exactly how the class is executing, including which methods are running in parallel. Maybe even with a very basic ASCII visualization? Then use it to help illustrate the examples in the README, refs #4.

    enhancement 
    opened by simonw 4
  • A way to turn off parallel execution (for easier comparison)

    A way to turn off parallel execution (for easier comparison)

    Would be neat if you could toggle the parallel execution on and off, to better demonstrate the performance difference that it implements.

    Would happen in this code that calls gather(): https://github.com/simonw/asyncinject/blob/47348978242880bd72a444158bbecc64566b0c55/asyncinject/init.py#L114-L123

    enhancement 
    opened by simonw 2
  • Ability to resolve an unregistered function

    Ability to resolve an unregistered function

    I'd like to be able to do the following:

    async def one():
        return 1
    
    async def two():
        return 2
    
    registry = Registry(one, two)
    
    async def three(one, two):
        return one + two
    
    result = await registry.resolve(three)
    

    Note that three has not been registered with the registry - but it still has its parameters inspected and used to resolve the dependencies.

    This would be useful for Datasette, where I want plugins to be able to interact with predefined registries without needing to worry about picking a name for their function that doesn't clash with a name that has been registered by another plugin.

    enhancement 
    opened by simonw 1
  • Try using __init_subclass__

    Try using __init_subclass__

    https://twitter.com/dabeaz/status/1466731368956809219 - David Beazley says:

    I think 95% of the problems once solved by a metaclass can be solved by __init_subclass__ instead

    research 
    opened by simonw 1
  • Documentation needs a smarter example that illustrates graph dependencies

    Documentation needs a smarter example that illustrates graph dependencies

    The examples in the README are boring, and don't show how the library can resolve a dependency tree into the most efficient possible mechanism.

    Need to come up with a realistic example that demonstrates that.

    documentation 
    opened by simonw 0
Releases(0.5)
  • 0.5(Apr 22, 2022)

    • registry.resolve() can now be used to resolve functions that have not been registered. #13

      async def one():
          return 1
      
      async def two():
          return 2
      
      registry = Registry(one, two)
      
      async def three(one, two):
          return one + two
      
      result = await registry.resolve(three)
      # result is now 3
      
    Source code(tar.gz)
    Source code(zip)
  • 0.4(Apr 18, 2022)

  • 0.3(Apr 16, 2022)

    Extensive, backwards-compatibility breaking redesign.

    • This library no longer uses subclasses. Instead, a Registry() object is created and async def functions are registered with that registry. The registry.resolve(fn) method is then used to execute functions with their dependencies. #8
    • Registry(timer=callable) can now be used to register a function to record the times taken to execute each function. This callable will be passed three arguments - the function name, the start time and the end time. #7
    • The parallel=True argument to the Registry() constructor can be switched to False to disable parallel execution - useful for running benchmarks to understand the performance benefit of running functions in parallel. #6
    Source code(tar.gz)
    Source code(zip)
  • 0.2(Dec 21, 2021)

  • 0.2a1(Dec 3, 2021)

  • 0.2a0(Nov 17, 2021)

    • Provided parameters are now forwarded on to dependent methods.
    • Parameters with default values specified in the method signature are no longer treated as dependency injection parameters. #1
    Source code(tar.gz)
    Source code(zip)
  • 0.1a0(Nov 17, 2021)

Owner
Simon Willison
Simon Willison
A Program that generates and checks Stripe keys 24x7.

A Program that generates and checks Stripe keys 24x7. This was made only for Educational Purposes, I'm not responsible for the damages cause by you

iNaveen 18 Dec 17, 2022
Search, generate & deliver Msfvenom payloads in an quick and easy way

Goal Search, generate & deliver payloads in an quick and easy way Be as simple as possible BUT with all msfvenom payloads. Ever lost time searching th

2 Mar 03, 2022
extract gene TSS/TES site form gencode/ensembl/gencode database GTF file and export bed format file.

GetTsite python Package extract gene TSS/TES site form gencode/ensembl/gencode database GTF file and export bed format file. Install $ pip install Get

laojunjun 7 Nov 21, 2022
Macro recording and metaprogramming in Python

macro-kit is a package for efficient macro recording and metaprogramming in Python using abstract syntax tree (AST).

8 Aug 31, 2022
Definitely legit social credit generator with python

definitely-legit-social-credit-generator I made this simple GUI program for a meme, no cap. Video: https://youtu.be/RmjxKtoli04 How to run: Clone this

Joshua Malabanan 8 Nov 01, 2021
Tools for binary data on cassette

Micro Manchester Tape Storage Tools for storing binary data on cassette Includes: Python script for encoding Arduino sketch for decoding Eagle CAD fil

Zack Nelson 28 Dec 25, 2022
✨ Un générateur de lien raccourcis en fonction d'un lien totalement fait en Python par moi, et en français.

Shorter Link ❗ Un générateur de lien raccourcis en fonction d'un lien totalement fait en Python par moi, et en français. Dépendences : pip install pys

MrGabin 3 Jun 06, 2021
A utility tool to create .env files

A utility tool to create .env files dump-env takes an .env.template file and some optional environmental variables to create a new .env file from thes

wemake.services 89 Dec 08, 2022
A Container for the Dependency Injection in Python.

Python Dependency Injection library aiodi is a Container for the Dependency Injection in Python. Installation Use the package manager pip to install a

Denis NA 3 Nov 25, 2022
Create C bindings for python automatically with the help of libclang

Python C Import Dynamic library + header + ctypes = Module like object! Create C bindings for python automatically with the help of libclang. Examples

1 Jul 25, 2022
A tool to create the basics of a project

Project-Scheduler Instalação Para instalar o Project Maker, você necessita está em um ambiente de desenvolvimento Linux ou wsl com alguma distro debia

2 Dec 17, 2021
A multipurpose python module

pysherlock pysherlock is a Python library for dealing with web scraping using images, it's a Python application of the rendertron headless browser API

Sachit 2 Nov 11, 2021
Creates a C array from a hex-string or a stream of binary data.

hex2array-c Creates a C array from a hex-string. Usage Usage: python3 hex2array_c.py HEX_STRING [-h|--help] Use '-' to read the hex string from STDIN.

John Doe 3 Nov 24, 2022
Quickly edit your slack posts.

Lightning Edit Quickly edit your Slack posts. Heavily inspired by @KhushrajRathod's LightningDelete. Usage: Note: Before anything, be sure to head ove

14 Nov 19, 2021
Lock files using python and cmd

Python_Lock_Files Lock files using python and cmd license feel free to do whatever you want to with these files, i dont take any responsibility tho, u

1 Nov 01, 2021
NFT-Generator is the best way to generate thousands of NFTs quick and easily with Python.

NFT-Generator is the best way to generate thousands of NFTs quick and easily with Python. Just add your files, set your configuration and run the scri

78 Dec 27, 2022
A simple tool to extract python code from a Jupyter notebook, and then run pylint on it for static analysis.

Jupyter Pylinter A simple tool to extract python code from a Jupyter notebook, and then run pylint on it for static analysis. If you find this tool us

Edmund Goodman 10 Oct 13, 2022
A simple language and reference decompiler/compiler for MHW THK Files

Leviathon A simple language and reference decompiler/compiler for MHW THK Files. Project Goals The project aims to define a language specification for

11 Jan 07, 2023
Homebase Name Changer for Fortnite: Save the World.

Homebase Name Changer This program allows you to change the Homebase name in Fortnite: Save the World. How to use it? After starting the HomebaseNameC

PRO100KatYT 7 May 21, 2022
Set of scripts for some automation during Magic Lantern development

~kitor Magic Lantern scripts A few automation scripts I wrote to automate some things in my ML development efforts. Used only on Debian running over W

Kajetan Krykwiński 1 Jan 03, 2022