Official code for our EMNLP2021 Outstanding Paper MindCraft: Theory of Mind Modeling for Situated Dialogue in Collaborative Tasks

Overview

MindCraft

Authors: Cristian-Paul Bara*, Sky CH-Wang*, Joyce Chai

This is the official code repository for the paper (arXiv link):

Cristian-Paul Bara, Sky CH-Wang, and Joyce Chai. 2021. MindCraft: Theory of Mind Modeling for Situated Dialogue in Collaborative Tasks. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing (EMNLP).

@inproceedings{bara2021mindcraft,
  title={MindCraft: Theory of Mind Modeling for Situated Dialogue in Collaborative Tasks},
  author={Bara, Cristian-Paul and CH-Wang, Sky and Chai, Joyce},
  booktitle={Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing (EMNLP)},
  year={2021}
}

Installation Instructions

This README assumes that the user is about to set up the MindCraft task on a to-be-newly-created Ubuntu-based AWS EC2 Server. If not, some commands may be invalid (e.g. apt-get vs. apt). This has been tested on both Ubuntu versions 18 and 20.

Server Setup & Port Forwarding (for reference, AWS port forwarding guidelines are adapted from here):

  1. Launch an EC2 Instance, choosing an Ubuntu-based x86 Amazon Machine Image such as Ubuntu Server 20.04 LTS (HVM), SSD Volume Type.
  2. Choose an instance type. Minimum resource requirements are relatively high, seeing as we are going to run web & game servers concurrently on the same machine. Testing has indicated that instances like t2.xlarge with at least 16 gigs of RAM work fine.
  3. Leave the options specified in 3. Configure Instance, 4. Add Storage, and 5. Add Tags as default.
  4. On 6. Configure Security Group, Add Rule of type Custom TCP Rule, with options Port Range: 22565 and Source: Anywhere. This ensures that players can access the game server with just the IP address.
  5. Add another rule, this time with option Port Range: 8080, keeping all other options the same as above. This ensures that players can access the web server with just the IP address.
  6. Review and launch, specifying your EC2 KeyPair for remote admin access.

Required Depenencies (install these sshed into the EC2 machine):

  1. Java (for reference, Java-Spigot guidelines are adapted from here)
    1. First, update your local package lists with sudo apt update; this updates the URL locations for all the required dependencies you're going to install later. On a newly-created EC2 server, these lists at startup are going to be horribly out of date.
    2. Next, install Java Runtime Environment 8 with sudo apt install openjdk-8-jre-headless.
  2. MySQL (for reference, MySQL guidelines are adapted from here)
    1. To install MySQL server, run sudo apt install mysql-server.
    2. Run setup script sudo mysql_secure_installation to configure your newly installed server with authentication permissions. Go through the setup instructions, setting up a password for the root-user, and confirming other security settings.
    3. To confirm that your newly-installed MySQL server is running, run systemctl status mysql.service to manually check.
    4. Now, the password just created in step 2.2 doesn't actually enable remote connections as root (which we want for our game server & web server); here, execute:
      1. sudo mysql
      2. In the MYSQL commandline, run ALTER USER 'root'@'localhost' IDENTIFIED WITH mysql_native_password BY 'password'; (replacing password with a password of your choosing).
      3. And finally FLUSH PRIVILEGES; to write changes to disk.
      4. To exit the MySQL commandline, exit.
    5. To create your MySQL database (where all MindCraft user activity is recorded), enter the MySQL commandline this time with mysql -u root -p, and then entering the password you just created.
    6. In the commandline interface, CREATE DATABASE minecraft; to create, and then SHOW DATABASES; to manually confirm the creation of the minecraft database. Before you exit, run SHOW GLOBAL VARIABLES LIKE 'PORT'; to confirm the port that the MySQL server is running on (by default, it should be 3306).
    7. Finally, set up game server plugin authentication details! Before you proceed: if this is your first time setting this up, the files listed below may not have been created yet. To create these files, go ahead and start the server once with bash startServer.sh. You're going to see a ton of errors appear, but hold out for now! When the server is done spinning up, enter stop to stop the server, and then proceed onto these sub-steps.
      1. Open spigot/plugins/situatedDialogue/config.yml, and change:
        1. mysql_password to what you defined in 2.4.2.
        2. mysql_port to what you just confirmed in 2.4.6 (default is 3306).
      2. Open spigot/plugins/LogBlock/config.yml, and change the same lines as above, this time under section mysql. Remember to also change the MySQL user here to root (default initialization has it as something else)!
      3. Open mean/server.js and do the same for MYSQL authentication credentials in the first few lines.
      4. Open spigot/plugins/AdvancedReplay and do the same for mysql.yml.
  3. NPM (for reference, Node.JS guidelines are adapted from here)
    1. Package lists should already be up-to-date, so running sudo apt install nodejs and sudo apt install npm will suffice; this will install the latest versions.
  4. MongoDB (for reference, Mongo guidelines are adapted from here) These steps are necessary mainly because I have used a cookie cutter MEAN stack setup, even though the underlying web server doesn't really use Mongo at all.
    1. Run wget -qO - https://www.mongodb.org/static/pgp/server-4.2.asc | sudo apt-key add -
    2. Run echo "deb [ arch=amd64,arm64 ] https://repo.mongodb.org/apt/ubuntu bionic/mongodb-org/4.2 multiverse" | sudo tee /etc/apt/sources.list.d/mongodb-org-4.2.list
    3. Run sudo apt update and sudo apt install -y mongodb-org to install Mongo.
    4. Run sudo systemctl start mongod to start the service and sudo systemctl status mongod to check service status.
    5. Finally, run sudo systemctl enable mongod to enable Mongo to start on every server reboot.

File Structure

The MindCraft environment is split into three main modules: (1) initialization, by which task variables (e.g. number of games, complexity of games, and more) are set to customized or default values; (2) the game server, a Bukkit/Spigot-made Minecraft multiplayer server that hosts the game itself and records all in-game interactions; and (3) the web server, a MEAN-stack (mainly, Node.JS) web server that records webpage user interactions, where currently recording of player mental states takes place.

All recording of user data -both game server and through the web server- are consolidated into a local MySQL database, the authentication details of which are to be specifiied in initialization files (or left as default).

Execution

Both the game server and web server are designed to be run concurrently in parallel. To achieve this, set up two tmuxes and run the following sections in separate muxes.

Game Server: Run bash startServer.sh. Edit the parameters passed to the plan generator python script if desired before running the server. If it's your first time running the server, you may have to go the newly-generated spigot/eula.txt and change eula=false to eula=true.
Web Server: Navigate to the mean folder and run npm start. Do this after the game server has been successfully spun up.

Replay

For replaying a specific previous game, make sure that the correct plan file of the logged game, indicated in the format logs/logs.XXXXXXX.plan.json (where XXX is the UNIX time stamp of when the game was played), is copied to the following folder and named as plan_generator/plan.json. After this has been done, start the server with bash spigot/start.command instead of the usual bash file.

Owner
Situated Language and Embodied Dialogue (SLED) Research Group
SLED Research Group @ University of Michigan
Situated Language and Embodied Dialogue (SLED) Research Group
PSGAN running with ncnn⚡妆容迁移/仿妆⚡Imitation Makeup/Makeup Transfer⚡

PSGAN running with ncnn⚡妆容迁移/仿妆⚡Imitation Makeup/Makeup Transfer⚡

WuJinxuan 144 Dec 26, 2022
Official pytorch implementation of "DSPoint: Dual-scale Point Cloud Recognition with High-frequency Fusion"

DSPoint Official implementation of "DSPoint: Dual-scale Point Cloud Recognition with High-frequency Fusion". Paper link: https://arxiv.org/abs/2111.10

Ziyao Zeng 14 Feb 26, 2022
Python library for tracking human heads with FLAME (a 3D morphable head model)

Video Head Tracker 3D tracking library for human heads based on FLAME (a 3D morphable head model). The tracking algorithm is inspired by face2face. It

61 Dec 25, 2022
ESTDepth: Multi-view Depth Estimation using Epipolar Spatio-Temporal Networks (CVPR 2021)

ESTDepth: Multi-view Depth Estimation using Epipolar Spatio-Temporal Networks (CVPR 2021) Project Page | Video | Paper | Data We present a novel metho

65 Nov 28, 2022
BC3407-Group-5-Project - BC3407 Group Project With Python

BC3407-Group-5-Project As the world struggles to contain the ever-changing varia

1 Jan 26, 2022
PyTorch reimplementation of REALM and ORQA

PyTorch reimplementation of REALM and ORQA

Li-Huai (Allan) Lin 17 Aug 20, 2022
G-NIA model from "Single Node Injection Attack against Graph Neural Networks" (CIKM 2021)

Single Node Injection Attack against Graph Neural Networks This repository is our Pytorch implementation of our paper: Single Node Injection Attack ag

Shuchang Tao 18 Nov 21, 2022
Implementation for paper "Towards the Generalization of Contrastive Self-Supervised Learning"

Contrastive Self-Supervised Learning on CIFAR-10 Paper "Towards the Generalization of Contrastive Self-Supervised Learning", Weiran Huang, Mingyang Yi

Weiran Huang 13 Nov 30, 2022
PSANet: Point-wise Spatial Attention Network for Scene Parsing, ECCV2018.

PSANet: Point-wise Spatial Attention Network for Scene Parsing (in construction) by Hengshuang Zhao*, Yi Zhang*, Shu Liu, Jianping Shi, Chen Change Lo

Hengshuang Zhao 217 Oct 30, 2022
ManimML is a project focused on providing animations and visualizations of common machine learning concepts with the Manim Community Library.

ManimML ManimML is a project focused on providing animations and visualizations of common machine learning concepts with the Manim Community Library.

259 Jan 04, 2023
Optimized code based on M2 for faster image captioning training

Transformer Captioning This repository contains the code for Transformer-based image captioning. Based on meshed-memory-transformer, we further optimi

lyricpoem 16 Dec 16, 2022
Deep learning models for classification of 15 common weeds in the southern U.S. cotton production systems.

CottonWeeds Deep learning models for classification of 15 common weeds in the southern U.S. cotton production systems. requirements pytorch torchsumma

Dong Chen 8 Jun 07, 2022
TensorFlow Ranking is a library for Learning-to-Rank (LTR) techniques on the TensorFlow platform

TensorFlow Ranking is a library for Learning-to-Rank (LTR) techniques on the TensorFlow platform

2.6k Jan 04, 2023
Customer-Transaction-Analysis - This analysis is based on a synthesised transaction dataset containing 3 months worth of transactions for 100 hypothetical customers.

Customer-Transaction-Analysis - This analysis is based on a synthesised transaction dataset containing 3 months worth of transactions for 100 hypothetical customers. It contains purchases, recurring

Ayodeji Yekeen 1 Jan 01, 2022
A fast model to compute optical flow between two input images.

DCVNet: Dilated Cost Volumes for Fast Optical Flow This repository contains our implementation of the paper: @InProceedings{jiang2021dcvnet, title={

Huaizu Jiang 8 Sep 27, 2021
DIT is a DTLS MitM proxy implemented in Python 3. It can intercept, manipulate and suppress datagrams between two DTLS endpoints and supports psk-based and certificate-based authentication schemes (RSA + ECC).

DIT - DTLS Interception Tool DIT is a MitM proxy tool to intercept DTLS traffic. It can intercept, manipulate and/or suppress DTLS datagrams between t

52 Nov 30, 2022
Negative Sample Matters: A Renaissance of Metric Learning for Temporal Grounding

2D-TAN (Optimized) Introduction This is an optimized re-implementation repository for AAAI'2020 paper: Learning 2D Temporal Localization Networks for

Joya Chen 112 Dec 31, 2022
Code and data for ImageCoDe, a contextual vison-and-language benchmark

ImageCoDe This repository contains code and data for ImageCoDe: Image Retrieval from Contextual Descriptions. Data All collected descriptions for the

McGill NLP 27 Dec 02, 2022
Code for KHGT model, AAAI2021

KHGT Code for KHGT accepted by AAAI2021 Please unzip the data files in Datasets/ first. To run KHGT on Yelp data, use python labcode_yelp.py For Movi

32 Nov 29, 2022