基于图像识别的开源RPA工具,理论上可以支持所有windows软件和网页的自动化

Overview

SimpleRPA

基于图像识别的开源RPA工具,理论上可以支持所有windows软件和网页的自动化

简介

SimpleRPA是一款python语言编写的开源RPA工具(桌面自动控制工具),用户可以通过配置yaml格式的文件,来实现桌面软件的自动化控制,简化繁杂重复的工作,比如运营人员给用户发消息,打标签,给店铺插旗;项目管理人员采集数据;测试人员实现简单的自动化测试等等。

为什么是SimpleRPA

  • 这是一个基于MIT协议的开源项目,对商业应用友好
  • 市面上常见的RPA工具,虽然功能强大完善,但基本上都基于过程控制的理念,实际上成了图形化编程工具,面对稍微复杂的场景,就需要编制大量的判断跳转和子流程嵌套;而SimpleRPA针对实际RPA场景做出了合理的抽象,虽然使用YAML格式配置,实际上是一种桌面自动控制的DSL,可以更便捷地表达自动化场景。
  • 支持配置文件内嵌Python代码,可以实现更灵活的逻辑
  • 基于图像采集、智能匹配和OCR识别,可以支持任何类型的桌面应用,而无需手工分析页面结构。

状态机概念

我们做屏幕自动化任务的时候,通常都会经历这样几个步骤:

  1. 检查当前桌面上是否显示了需要的页面(比如查看特定位置的图像,或者比对OCR识别出的文字)
  2. 如果确实是,就收集一些文字或图像的信息(这一步未必会有,要看具体任务类型,有些自动化只要把页面流程走通就可以)
  3. 查找页面上特定的控件(比如某个按钮),对它进行操作(如点击)
  4. 跳转到下一个页面,回到步骤1,反复循环,直到最终页面出现

SimpleRPA把这个过程,抽象为一个状态机模型:每个页面是一个状态(state),通过“action”触发,可以跳转到下一个状态; 在每一个State内部,可以做check(检查是否需要的页面),可以find(查找特定控件,或者收集信息); 针对find的结果,还可以形成子状态,来实现复杂的操作。

示例

SimpleRPA的自动化脚本,由一个yaml配置文件,和子文件夹构成,文件夹中通常存放要查找的图像模板。

示例1——自动刷新页面

一个简单的配置文件示例如下:

# 有一个特定的浏览器页面,我们需要定时刷新,以便更新它的状态
name: "浏览器自动刷新"
ver: 0.1
# 默认不会调整屏幕分辨率,所有内容里指定的坐标,都是相对于当前屏幕左上角;
# 但如果这里指定了屏幕宽度或高度,就会在开始运行内容之前,调整分辨率
# screen_width: 3440   
# screen_height: 1440
states:
  - name: "当前窗口"
    # 为了简化,这里假设当前桌面刚刚从浏览器窗口切换到脚本运行窗口,所以一启动就先用alt+tab键切换回去
    id: 1
    transition:
      # 通过点击热键这个action, 迁移到下一个状态
      action: hotkey('alt', 'tab')
      wait: 1
  - name: "浏览器窗口"
    id: 2
    check:
      image:
          snapshot: !rect l:0, r:60, t:113, b:182
          template: auto_test/detect_logo.png
          # debug: True
      fail_action: raise_error('当前页面不是期待的页面')
    transition:
      # 通过点击F5实现浏览器刷新,迁移前先等待60s;
      # 没有其他页面需要显示了,所以还是迁移到当前状态,无限循环
      action: hotkey('f5')
      wait: 60
      to: 2

上面这个示例可以用流程图表示如下:

graph TD;
    1[当前窗口] -- Alt+Tab --> 2[浏览器窗口]
    2 -- F5 --> 2 

这里states是一个列表,每个列表项是一个状态,每个状态有一个id属性作为唯一标识。状态之间的迁移,通过transition属性的to来指定。 to指定的内容可以是某一个state的id,也可以是next(缺省值),next意味着迁移到下一个状态(按列表定义顺序,而不是id编号顺序)。

transition的action是表示触发迁移的动作,支持键盘鼠标、屏幕、剪贴板、窗口引用(目前只支持windows)等一系列操作。 transition的wait表示动作执行以后,等待的时间。

这里的check属性里面定义了image,用来检测屏幕上特定区域是否显示了指定的图案,如果图案存在,说明正确进入了当前状态; 如果不存在,会触发fail_action的执行。

示例2——

自动归档trello任务。一个典型的trello归档页面如下: trello看板归档

下面的脚本,可以帮用户自动归档所有已完成的任务。

name: "自动归档Trello"
ver: 0.5
#screen_width: 3440
#screen_height: 1440
range: !rect l:0, r:1920, t:0, b:1080
time_scale: 1
states:
  - name: "点击获取窗口焦点"
    id: 1
    transition:
      # 点击
      action: click(300, 20)
      wait: 1.5
      to: next
  - name: "已完成列表"
    id: 2
    transition:
      # 右击第一个卡片
      action: rightclick(1540, 290)
      wait: 1
      to: next
  - name: "右键菜单"
    id: 3
    find:
      image:
        snapshot: !rect l:1415, r:1805, t:239, b:609
        template: auto_trello/detect_target.png
        confidence: 0.8
      fail_action: raise_error('找不到归档按钮')
    transition:
      # 左击归档按钮
      action: click(1415 + state.find_result.center_x, 239 + state.find_result.center_y)
      wait: 1
      to: 2
      max_time: 2

配置类

实际上,每个配置项,都有对应的数据类型定义,SimpleRPA读取配置文件的时候,会通过objtyping把yaml数据转换为对应的类实例。

数据类型定义,请参照 SimpleRPA 类图

plantuml代理生成的SimpleRPA 类图

本文档开头实例中的配置文件,转换之后的实例关系图如下:SimpleRPA 示例对象图

plantuml代理生成的SimpleRPA 对象图

待实现

  • 更方便的数据读取和采集模型(目前只能基于键盘鼠标操作实现)
  • 图形化设计器(会先放出一个辅助截图工具)
  • 可扩展的操作(这样就可以自己实现
  • 发布到PyPI库,支持pip install 安装
Owner
Song Hui
Song Hui
This is a tensorflow re-implementation of PSENet: Shape Robust Text Detection with Progressive Scale Expansion Network.My blog:

PSENet: Shape Robust Text Detection with Progressive Scale Expansion Network Introduction This is a tensorflow re-implementation of PSENet: Shape Robu

Michael liu 498 Dec 30, 2022
ERQA - Edge Restoration Quality Assessment

ERQA - a full-reference quality metric designed to analyze how good image and video restoration methods (SR, deblurring, denoising, etc) are restoring real details.

MSU Video Group 27 Dec 17, 2022
Localization of thoracic abnormalities model based on VinBigData (top 1%)

Repository contains the code for 2nd place solution of VinBigData Chest X-ray Abnormalities Detection competition. The goal of competition was to auto

33 May 24, 2022
This repository summarized computer vision theories.

This repository summarized computer vision theories.

3 Feb 04, 2022
Script para controlar o movimento do mouse usando Python e openCV com câmera em tempo real que detecta pontos de referência da mão, rastreia padrões de gestos em vez de um mouse físico.

mouserController Script para controlar o movimento do mouse usando Python e openCV com câmera em tempo real que detecta pontos de referência da mão, r

Vinícius Azevedo 6 Jun 28, 2022
Handwritten Text Recognition (HTR) using TensorFlow 2.x

Handwritten Text Recognition (HTR) system implemented using TensorFlow 2.x and trained on the Bentham/IAM/Rimes/Saint Gall/Washington offline HTR data

Arthur Flôr 160 Dec 21, 2022
This is used to convert a string to an Image with Handwritten Characters.

Text-to-Handwriting-using-python This is used to convert a string to an Image with Handwritten Characters. text_to_handwriting(string: str, save_to: s

Akashdeep Mahata 3 Aug 15, 2022
QuanTaichi: A Compiler for Quantized Simulations (SIGGRAPH 2021)

QuanTaichi: A Compiler for Quantized Simulations (SIGGRAPH 2021) Yuanming Hu, Jiafeng Liu, Xuanda Yang, Mingkuan Xu, Ye Kuang, Weiwei Xu, Qiang Dai, W

Taichi Developers 119 Dec 02, 2022
Pre-Recognize Library - library with algorithms for improving OCR quality.

PRLib - Pre-Recognition Library. The main aim of the library - prepare image for recogntion. Image processing can really help to improve recognition q

Alex 80 Dec 30, 2022
A dataset handling library for computer vision datasets in LOST-fromat

A dataset handling library for computer vision datasets in LOST-fromat

8 Dec 15, 2022
Code for the head detector (HeadHunter) proposed in our CVPR 2021 paper Tracking Pedestrian Heads in Dense Crowd.

Head Detector Code for the head detector (HeadHunter) proposed in our CVPR 2021 paper Tracking Pedestrian Heads in Dense Crowd. The head_detection mod

Ramana Subramanyam 76 Dec 06, 2022
MXNet OCR implementation. Including text recognition and detection.

insightocr Text Recognition Accuracy on Chinese dataset by caffe-ocr Network LSTM 4x1 Pooling Gray Test Acc SimpleNet N Y Y 99.37% SE-ResNet34 N Y Y 9

Deep Insight 99 Nov 01, 2022
Here use convulation with sobel filter from scratch in opencv python .

Here use convulation with sobel filter from scratch in opencv python .

Tamzid hasan 2 Nov 11, 2021
Convert PDF/Image to TXT using EasyOcr - the best OCR engine available!

PDFImage2TXT - DOWNLOAD INSTALLER HERE What can you do with it? Convert scanned PDFs to TXT. Convert scanned Documents to TXT. No coding required!! In

Hans Alemão 2 Feb 22, 2022
Code for CVPR2021 paper "Learning Salient Boundary Feature for Anchor-free Temporal Action Localization"

AFSD: Learning Salient Boundary Feature for Anchor-free Temporal Action Localization This is an official implementation in PyTorch of AFSD. Our paper

Tencent YouTu Research 146 Dec 24, 2022
An Optical Character Recognition system using Pytesseract/Extracting data from Blood Pressure Reports.

Optical_Character_Recognition An Optical Character Recognition system using Pytesseract/Extracting data from Blood Pressure Reports. As an IOT/Compute

Ramsis Hammadi 1 Feb 12, 2022
A little but useful tool to explore OCR data extracted with `pytesseract` and `opencv`

Screenshot OCR Tool Extracting data from screen time screenshots in iOS and Android. We are exploring 3 options: Simple OCR with no text position usin

Gabriele Marini 1 Dec 07, 2021
An unofficial implementation of the paper "AutoVC: Zero-Shot Voice Style Transfer with Only Autoencoder Loss".

AutoVC: Zero-Shot Voice Style Transfer with Only Autoencoder Loss This is an unofficial implementation of AutoVC based on the official one. The reposi

Chien-yu Huang 27 Jun 16, 2022
Convert scans of handwritten notes to beautiful, compact PDFs

Convert scans of handwritten notes to beautiful, compact PDFs

Matt Zucker 4.8k Jan 01, 2023
📷 Face Recognition using Haar-Cascade Classifier, OpenCV, and Python

Face-Recognition-System Face Recognition using Haar-Cascade Classifier, OpenCV and Python. This project is based on face detection and face recognitio

1 Jan 10, 2022